Skip to main content
Log in

Ciprofloxacin Degradation Using a PANI-Derived Mesoporous Carbon/TiO2 Photocatalyst

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This paper presents one-step ciprofloxacin degradation via photocatalysis using TiO2@PANI. A TiO2@PANI material was produced via in situ polymerization through aniline monomer attachment into the surface of anatase nano TiO2. Pyrolysis was conducted to enhance pore properties. The properties of the TiO2@PANI material were characterized using N2 sorption, Fourier transform infrared spectroscopy, scanning electron microscopy with energy-dispersive X-ray, X-ray diffraction, and ash content analysis. A mesoporous pore characteristic is successfully obtained, with a mean pore diameter of approximately 20 nm. A ciprofloxacin degradation experiment showed that TiO2@PANI, 90%, 400 °C, completely degraded ciprofloxacin with a reaction rate constant of 0.03489 min−1. The effect of TiO2 loading and UV lamp power was also investigated. Two mathematical models were explored i.e. heterogeneous and pseudo-homogenous first-order models to obtain a comprehensive understanding of the reaction mechanism. Both models provide a good fit. Recyclability analysis shows that TiO2@PANI has better durability compared with bare TiO2 after 5 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ahmadzadeh, S., Asadipour, A., Pournamdari, M., Behnam, B., Rahimi, H. R., & Dolatabadi, M. (2017). Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: Optimization and modelling through response surface methodology. Process Safety and Environmental Protection, 109, 538–547. https://doi.org/10.1016/j.psep.2017.04.026

    Article  CAS  Google Scholar 

  • Aitken, M., & Kleinrock, M. (2015). Global medicines use in 2020. IMS Institute for Heathcare Informatics. retrieved from https://www.iqvia.com/-/media/iqvia/pdfs/institute-reports/global-medicines-use-in-2020

  • Al-Ahmad, A., Daschner, F. D., & Kummerer, K. (1999). Environmental contamination and toxicology biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin g, and sulfamethoxazole and inhibition of waste water bacteria. Archieves of Evironmental Contamination and Toxicology, 163(37), 158–163.

    Article  Google Scholar 

  • Anfar, Z., Ait Ahsaine, H., Zbair, M., Amedlous, A., Ait El Fakir, A., Jada, A., & El Alem, N. (2019). Recent trends on numerical investigations of response surface methodology for pollutants adsorption onto activated carbon materials: A review. Environmental Science and Technology, 50(10), 1043–1084. https://doi.org/10.1080/10643389.2019.1642835

    Article  CAS  Google Scholar 

  • Chalmers, J. M., & Griffiths, P. R. (2003). Handbook of Vibrational Spectroscopy. John Wiley & Sons Ltd. https://doi.org/10.1016/s1386-1425(02)00151-8

  • Chougala, L. S., Yatnatti, M. S., Linganagoudar, R. K., Kamble, R. R., & Kadadevarmath, J. S. (2017). A simple approach on synthesis of TiO2 nanoparticles and its application in dye sensitized solar cells. Journal of Nano-and Electronic Physics, 9(4), 040051–040056. https://doi.org/10.21272/jnep.9(4).04005

  • Cumba, R. M. T., Ligalig, C. B., Tingson, J. M. D., Molina, M. P., Alguno, A. C., Deocaris, C. C., Latayada, F. S., Primadona, I., & Capangpangan, R. Y. (2022). Photocatalytic Activity of cellulose nanocrystals/zinc oxide nanocomposite against thiazine dye under UV and visible light irradiation. ASEAN Journal of Chemical Engineering, 22(1), 168–177. https://doi.org/10.22146/ajche.72331

    Article  CAS  Google Scholar 

  • Fatimah, S., Ragadhita, R., Husaeni, D. F. A., & Nandiyanto, A. B. D. (2021). How to calculate crystallite size from X-ray diffraction (XRD) using Scherrer method. ASEAN Journal of Science and Engineering, 2(1), 65–76. https://doi.org/10.17509/ajse.v2i1.37647

    Article  Google Scholar 

  • Girardi, C., Greve, J., Lamshöft, M., Fetzer, I., Miltner, A., Schäffer, A., & Kästner, M. (2011). Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities. Journal of Hazardous Materials, 198, 22–30. https://doi.org/10.1016/j.jhazmat.2011.10.004

    Article  CAS  Google Scholar 

  • Githinji, L. J. M., Musey, M. K., & Ankumah, R. O. (2011). Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water, Air, and Soil Pollution, 219(1–4), 191–201. https://doi.org/10.1007/s11270-010-0697-1

    Article  CAS  Google Scholar 

  • Jumat, N. A., Wai, P. S., Ching, J. J., & Basirun, W. J. (2017). Synthesis of polyaniline-TiO2 nanocomposites and their application in photocatalytic degradation. Polymers and Polymer Composites, 25(7), 507–514. https://doi.org/10.1177/096739111702500701

    Article  CAS  Google Scholar 

  • Kelly, K. R., & Brooks, B. W. (2018). Global aquatic hazard assessment of ciprofloxacin: Exceedances of antibiotic resistance development and ecotoxicological thresholds. Progress in Molecular Biology and Translational Science, 159, 59–77. https://doi.org/10.1016/bs.pmbts.2018.07.004

  • Kenyon, C. (2022). Concentrations of ciprofloxacin in the world’s rivers are associated with the prevalence of fluoroquinolone resistance in escherichia coli: A global ecological analysis. Antibiotics, 11(3), 4–9. https://doi.org/10.3390/antibiotics11030417

    Article  CAS  Google Scholar 

  • Lin, Y., Li, D., Hu, J., Xiao, G., Wang, J., Li, W., & Fu, X. (2012). Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite. Journal of Physical Chemistry C, 116(9), 5764–5772. https://doi.org/10.1021/jp211222w

    Article  CAS  Google Scholar 

  • Ma, X., & Wang, Z. (2022). Removal of ciprofloxacin from wastewater by ultrasound/electric field/sodium persulfate (US/E/PS). Processes, 10(1),124. https://doi.org/10.3390/pr10010124

  • Mutia, A. S., Ariyanto, T., & Prasetyo, I. (2022). Ciprofloxacin removal from simulated wastewater through a combined process of adsorption and oxidation processes using Fe/C adsorbent. Water, Air, and Soil Pollution, 233(4), 1–13. https://doi.org/10.1007/s11270-022-05618-5

    Article  CAS  Google Scholar 

  • National Center for Biotechnology Information. (2023). Ciprofloxacin. National Library of Medicine. Retrievied from https://pubchem.ncbi.nlm.nih.gov/compound/Ciprofloxacin

  • Phoon, B. L., Ong, C. C., Mohamed Saheed, M. S., Show, P. L., Chang, J. S., Ling, T. C., Lam, S. S., & Juan, J. C. (2020). Conventional and emerging technologies for removal of antibiotics from wastewater. Journal of Hazardous Materials, 400, 122961. https://doi.org/10.1016/j.jhazmat.2020.122961

  • Radoičić, M., Ćirić-Marjanović, G., Spasojević, V., Ahrenkiel, P., Mitrić, M., Novaković, T., & Šaponjić, Z. (2017). Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites. Applied Catalysis B: Environmental, 213, 155–166. https://doi.org/10.1016/j.apcatb.2017.05.023

    Article  CAS  Google Scholar 

  • Raini, M. (2016). Antibiotik golongan fluorokuinolon : Manfaat dan kerugian. Media Litbangkes, 26(3), 163–174.

    Google Scholar 

  • Silverstein, R. M., Bassler, G. C., & Morrill, T. C. (1991). Spectrometric Identification of Organic Compounds (5th ed.). John Wiley & Sons, Inc. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/mrc.1260300417

  • Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  • Viana, M. M., Soares, V. F., & Mohallem, N. D. S. (2010). Synthesis and characterization of TiO2 nanoparticles. Ceramics International, 36(7), 2047–2053. https://doi.org/10.1016/j.ceramint.2010.04.006

    Article  CAS  Google Scholar 

  • Wang, D., Xiao, L., Luo, Q., Li, X., An, J., & Duan, Y. (2011). Highly efficient visible light TiO2 photocatalyst prepared by sol-gel method at temperatures lower than 300°C. Journal of Hazardous Materials, 192(1), 150–159. https://doi.org/10.1016/j.jhazmat.2011.04.110

    Article  CAS  Google Scholar 

  • Yurdakal, S., Garlisi, C., Özcan, L., Bellardita, M., & Palmisano, G. (2019). (Photo)catalyst characterization techniques: Adsorption isotherms and BET, SEM, FTIR, UV-Vis, photoluminescence, and electrochemical characterizations. In Heterogeneous Photocatalysis: Relationships with Heterogeneous Catalysis and Perspectives (Vol. 331307484, Issue April, pp. 87–152). Elsevier B.V. https://doi.org/10.1016/B978-0-444-64015-4.00004-3

  • Zheng, X., Xu, S., Wang, Y., Sun, X., Gao, Y., & Gao, B. (2018). Enhanced degradation of ciprofloxacin by graphitized mesoporous carbon (GMC)-TiO2 nanocomposite: Strong synergy of adsorption-photocatalysis and antibiotics degradation mechanism. Journal of Colloid and Interface Science, 527, 202–213. https://doi.org/10.1016/j.jcis.2018.05.054

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by Penelitian Dasar Unggulan Perguruan Tinggi, Ministry of Education, Culture, Research, and Technology (Grant No. 2692/UN1/DITLIT/Dit-Lit/PT.01.03/2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teguh Ariyanto.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 111 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasetyo, B.A., Prasetyo, I. & Ariyanto, T. Ciprofloxacin Degradation Using a PANI-Derived Mesoporous Carbon/TiO2 Photocatalyst. Water Air Soil Pollut 234, 391 (2023). https://doi.org/10.1007/s11270-023-06405-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06405-6

Keywords

Navigation