Skip to main content
Log in

Ciprofloxacin Removal from Simulated Wastewater Through a Combined Process of Adsorption and Oxidation Processes Using Fe/C Adsorbent

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This paper presents a novel approach to remove ciprofloxacin from an aqueous solution using Fe3O4/C material by adsorption and then followed by a degradation process using several advanced oxidation technologies, i.e., heterogeneous Fenton and catalytic ozonation. Porous carbon material was synthesized through several stages, i.e., polymerization of resorcinol-formaldehyde and carbonization (800 °C). The properties of porous carbon (blank carbon and Fe/C) were characterized by N2-sorption analyzer, SEM-EDX, XRD, and TGA. The adsorption isotherm data were well described by the Langmuir isotherm model with ciprofloxacin uptake up to 208.31 mg g-1 and 189.38 mg g-1 at 30°C by Fe/C and blank carbon material, respectively. The maximum uptake was influenced by adsorption temperature and mesopore volume of material. After adsorbing the ciprofloxacin, the Fe/C material was contacted with H2O2 and ozone to produce hydroxyl radicals (OH*). The result showed that ciprofloxacin was degraded about 99.7% within 120 min at 30°C through heterogeneous Fenton oxidation. The degradation performance for the other two oxidation processes: catalytic ozonation and combined ozonation-Fenton (O3/H2O2), has been explored as well. The process using O3/H2O2 could degrade ciprofloxacin quickly. In addition, Fe/C material could be reused during cyclability test without significantly reducing the catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Akhtar, J., Amin, N. A. S., & Shahzad, K. (2016). A review on removal of pharmaceuticals from water by adsorption. Desalination and Water Treatment, 57(27), 12842–12860. https://doi.org/10.1080/19443994.2015.1051121

    Article  CAS  Google Scholar 

  • Amelia, S., Sediawan, W. B., Prasetyo, I., Munoz, M., & Ariyanto, T. (2020). Role of the pore structure of Fe/C catalysts on heterogeneous Fenton oxidation. Journal of Environmental Chemical Engineering, 8(1), 102921. https://doi.org/10.1016/j.jece.2019.102921

    Article  CAS  Google Scholar 

  • Ariyanto, T., Kurniasari, M., Laksmana, W. T., & Rochmadi, & Prasetyo, I. (2019a). Pore size control of polymer-derived carbon adsorbent and its application for dye removal. International Journal of Environmental Science and Technology, 16(8), 4631–4636. https://doi.org/10.1007/s13762-018-2166-0

    Article  CAS  Google Scholar 

  • Ariyanto, T., Sarwendah, R. A. G., Amimmal, Y. M. N., Laksmana, W. T., & Prasetyo, I. (2019b). Modifying nanoporous carbon through hydrogen peroxide oxidation for removal of metronidazole antibiotics from simulated wastewater. Processes, 7(11), 1–9. https://doi.org/10.3390/pr7110835

    Article  CAS  Google Scholar 

  • Avcı, A., İnci, İ., & Baylan, N. (2019). A comparative adsorption study with various adsorbents for the removal of ciprofloxacin hydrochloride from water. Water Air Soil Pollut, 230(250). https://doi.org/10.1007/s11270-019-4315-6

  • Beltrán, F. J. (2004). Ozone reaction kinetics for water and wastewater systems. In Lewis Publisher (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004.

  • Carabineiro, S. A. C., Thavorn-Amornsri, T., Pereira, M. F. R., Serp, P., & Figueiredo, J. L. (2012). Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catalysis Today, 186(1), 29–34. https://doi.org/10.1016/j.cattod.2011.08.020

    Article  CAS  Google Scholar 

  • Cuerda, E. M., Alexandre, M. F., & Fernandez, C. (2020). Antibiotics from water. An overview. Water, 12(102), 1–50.

    Google Scholar 

  • Do, D. D. (1998). Adsorption Analysis:Equilibria and Kinetics (Vol. 2). Imperial College Press.

    Book  Google Scholar 

  • Epold, I. (2015). Degradation of Pharmaceuticals by Advanced Oxidation Technologies in Aqueous Matrices. Tallinn University of Technology.

    Google Scholar 

  • Epold, I., Dulova, N., Veressinina, Y., & Trapido, M. (2012). Application of ozonation, UV photolysis, Fenton treatment and other related processes for degradation of ibuprofen and sulfamethoxazole in different aqueous matrices. Journal of Advanced Oxidation Technologies, 15(2), 354–364. https://doi.org/10.1515/jaots-2012-0215

    Article  CAS  Google Scholar 

  • Gu, C., & Karthikeyan, K. G. (2005). Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environmental Science & Technology, 39(23), 9166–9173. https://doi.org/10.1021/es051109f

    Article  CAS  Google Scholar 

  • Guo, Y., Qi, P. S., & Liu, Y. Z. (2017). A review on advanced treatment of pharmaceutical wastewater. IOP Conference Series: Earth and Environmental Science, 63(1). https://doi.org/10.1088/1755-1315/63/1/012025

  • Hoekstra, J., Beale, A. M., Soulimani, F., Versluijs-Helder, M., Van De Kleut, D., Koelewijn, J. M., Geus, J. W., & Jenneskens, L. W. (2016). The effect of iron catalyzed graphitization on the textural properties of carbonized cellulose: Magnetically separable graphitic carbon bodies for catalysis and remediation. Carbon, 107, 248–260. https://doi.org/10.1016/j.carbon.2016.05.065

    Article  CAS  Google Scholar 

  • Igwegbe, C. A., Oba, S. N., Aniagor, C. O., Adeniyi, A. G., & Ighalo, J. O. (2021). Adsorption of ciprofloxacin from water: A comprehensive review. In. Journal of Industrial and Engineering Chemistry, 93, 57–77. https://doi.org/10.1016/j.jiec.2020.09.023

    Article  CAS  Google Scholar 

  • Jain, M., Yadav, M., Kohout, T., Lahtinen, M., Garg, V. K., & Sillanpää, M. (2018). Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution. Water Resources and Industry, 20(Vi), 54–74. https://doi.org/10.1016/j.wri.2018.10.001

    Article  Google Scholar 

  • Jalil, M. E. R., Baschini, M., & Sapag, K. (2017). Removal of ciprofloxacin from aqueous solutions using pillared clays. Materials, 10(12), 17–19. https://doi.org/10.3390/ma10121345

    Article  CAS  Google Scholar 

  • Jiang, C., Zhang, X., Xu, X., & Wang, L. (2016). Magnetic mesoporous carbon material with strong ciprofloxacin adsorption removal property fabricated through the calcination of mixed valence Fe based metal-organic framework. Journal of Porous Materials, 23(5), 1297–1304. https://doi.org/10.1007/s10934-016-0188-x

    Article  CAS  Google Scholar 

  • Jin, X., Wu, X., Zhang, Z., Huang, Z., Liu, Y., Fang, M., & Min, X. (2018). Preparation of carbon-coated Fe3O4 porous particles and their adsorption properties of iron (III) ion. Water Science and Technology: Water Supply, 18(1), 306–317. https://doi.org/10.2166/ws.2017.082

    Article  CAS  Google Scholar 

  • Khader, E. H., Mohammed, T. J., Mirghaffari, N., Salman, A. D., Juzsakova, T., & Abdullah, T. A. (2021). Removal of organic pollutants from produced water by batch adsorption treatment. Clean Technologies and Environmental Policy, 0123456789. https://doi.org/10.1007/s10098-021-02159-z

  • Kurniawan, I., Mariadi, P. D., & Huda, A. (2019). Hubungan Tingkat Penggunaan Antibiotik di Rumah Sakit dengan Potensi Cemaran Antibiotik di Perairan Umum. Prosiding Seminar Nasional II Hasil Litbangyasa Industri, 165–173.

  • Li, X., Wang, W., Dou, J., Gao, J., Chen, S., Quan, X., & Zhao, H. (2016). Dynamic adsorption of ciprofloxacin on carbon nanofibers: Quantitative measurement by in situ fluorescence. Journal of Water Process Engineering, 9, e14–e20. https://doi.org/10.1016/j.jwpe.2014.12.006

    Article  Google Scholar 

  • Lu, D., Xu, S., Qiu, W., Sun, Y., Liu, X., Yang, J., & Ma, J. (2020). Adsorption and desorption behaviors of antibiotic ciprofloxacin on functionalized spherical MCM-41 for water treatment. Journal of Cleaner Production, 264, 121644. https://doi.org/10.1016/j.jclepro.2020.121644

    Article  CAS  Google Scholar 

  • Mansouri, F., Chouchene, K., Roche, N., & Ksibi, M. (2021). Removal of pharmaceuticals from water by adsorption and advanced oxidation processes: State of the art and trends. Applied Sciences (Switzerland), 11(14). https://doi.org/10.3390/app11146659

  • Mao, H., Wang, S., Lin, J. Y., Wang, Z., & Ren, J. (2016). Modification of a magnetic carbon composite for ciprofloxacin adsorption. In Journal of Environmental Sciences (China), 49, 179–188. https://doi.org/10.1016/j.jes.2016.05.048

    Article  CAS  Google Scholar 

  • Mohd Zawawi, N., Hamzah, F., Veny, H., Mohd Rodhi, M. N., & Sarif, M. (2021). Chemical and Electrochemical properties of bamboo activated carbon activate using potassium hydroxide assisted by microwave-ultrasonic irradiation. ASEAN Journal of Chemical Engineering, 21(2), 211–224. https://doi.org/10.22146/ajche.64617

  • Munoz, M., Nieto-Sandoval, J., Álvarez-Torrellas, S., Sanz-Santos, E., Calderón, B., de Pedro, Z. M., Larriba, M., Fullana, A., García, J., & Casas, J. A. (2021). Carbon-encapsulated iron nanoparticles as reusable adsorbents for micropollutants removal from water. Separation and Purification Technology, 257, 117974. https://doi.org/10.1016/j.seppur.2020.117974

  • Mutia, A. S. (2022). Adsorpsi dan degradasi ciprofloxacin pada air limbah simulasi dengan proses kombinasi fenton heterogen dan ozonasi katalitik. Universitas Gadjah Mada.

  • Prasetyo, I., Akbar, F., Prabandari, A. W., & Ariyanto, T. (2019). Fenton oxidation using easily recoverable catalyst (Fe3O4) as efficient approach to treat dyeing effluent in traditional industry. ASEAN Journal on Science and Technology for Development, 36(3), 103–108. https://doi.org/10.29037/ajstd.592

  • Rekhate, C. V., & Srivastava, J. K. (2020). Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- A review. Chemical Engineering Journal Advances, 3, 100031. https://doi.org/10.1016/j.ceja.2020.100031

    Article  Google Scholar 

  • Ren, N., Wang, C., Wei, W., Li, J., Yue, X., & Qin, G. (2020). Ciprofloxacin adsorption on a mesoporous carbon prepared by a dual-template route. Desalination and Water Treatment, 192, 241–247. https://doi.org/10.5004/dwt.2020.25760

    Article  CAS  Google Scholar 

  • Sharma, P. C., Jain, A., Jain, S., Pahwa, R., & Yar, M. S. (2010). Ciprofloxacin: Review on developments in synthetic, analytical, and medicinal aspects. Journal of Enzyme Inhibition and Medicinal Chemistry, 25(4), 577–589. https://doi.org/10.3109/14756360903373350

    Article  CAS  Google Scholar 

  • Tang, Y., Chen, Q., Li, W., Xie, X., Zhang, W., Zhang, X., Chai, H., & Huang, Y. (2020). Engineering magnetic N-doped porous carbon with super-high ciprofloxacin adsorption capacity and wide pH adaptability. Journal of Hazardous Materials, 388(October 2019), 122059. https://doi.org/10.1016/j.jhazmat.2020.122059

    Article  CAS  Google Scholar 

  • Tu, Y. J., Premachandra, G. S., Boyd, S. A., Sallach, J. B., Li, H., Teppen, B. J., & Johnston, C. T. (2021). Synthesis and evaluation of Fe3O4-impregnated activated carbon for dioxin removal. Chemosphere, 263, 128263. https://doi.org/10.1016/j.chemosphere.2020.128263

  • Wang, Y. X., Ngo, H. H., & Guo, W. S. (2015). Preparation of a specific bamboo based activated carbon and its application for ciprofloxacin removal. In Science of the Total Environment (Vol. 533, pp. 32–39). https://doi.org/10.1016/j.scitotenv.2015.06.087

  • Wardani, R. K., Dahlan, K., Wahyudi, S. T., & Sukaryo, S. G. (2019). Synthesis and characterization of nanoparticle magnetite for biomedical application. AIP Conference Proceedings, 2194(December). https://doi.org/10.1063/1.5139869

  • Wu, Y., Zhou, S., Qin, F., Zheng, K., & Ye, X. (2010). Modeling the oxidation kinetics of Fenton’s process on the degradation of humic acid. Journal of Hazardous Materials, 179(1–3), 533–539. https://doi.org/10.1016/j.jhazmat.2010.03.036

    Article  CAS  Google Scholar 

  • Zazo, J. A., Pliego, G., Blasco, S., Casas, J. A., & Rodriguez, J. J. (2011). Intensification of the Fenton process by increasing the temperature. Industrial and Engineering Chemistry Research, 50(2), 866–870. https://doi.org/10.1021/ie101963k

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was funded by Kurita Overseas Research Grant 2021 (21Pid077-17 T). A.S.M thanks to the Ministry of Finance of the Republic of Indonesia for the LPDP master scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imam Prasetyo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutia, A.S., Ariyanto, T. & Prasetyo, I. Ciprofloxacin Removal from Simulated Wastewater Through a Combined Process of Adsorption and Oxidation Processes Using Fe/C Adsorbent. Water Air Soil Pollut 233, 146 (2022). https://doi.org/10.1007/s11270-022-05618-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05618-5

Keywords

Navigation