Skip to main content
Log in

Reactive oxygen species aided photocatalytic degradation of tetracycline using non-metal activated carbon doped TiO2 nanocomposite under UV-light irradiation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The degradation of an antibiotic drug was investigated by low-cost nanocomposite material. The visible light responsive non-metal activated carbon doped TiO2 nanocomposite photocatalyst with wide band gap energy was synthesized via the co-precipitation method with an equal mass ratio of activated carbon and TiO2. Under optimal conditions, the photocatalytic experiment was carried out in a batch reactor in the presence of irradiation of 15W UV light. A significant effect of carbon caused a notable reduction in the optical band gap of doped with TiO2. The composite showed the maximum removal of 87.6% tetracycline drug in 45 min. The optimal catalyst dose and drug concentration were found to be 1.25 g and 100 mg/L, respectively, but the optimal reaction time, 45 min, and pH = 6.5 are very significant in the presence of UV light. The kinetic experimental data showed the best fitting for both pseudo-first-order (ka = 21.83 min−1) and pseudo-second-order (0.23 g/g min) models with a high accuracy based on R2 values. Freundlich model showed a maximum adsorption capacity (qm) of 94.87 (mg/g) for tetracycline drug removal on the heterogeneous surface with higher accuracy (R2 = 0.999) than the Langmuir model. Adsorption followed by degradation was shown at optimized pH, while intraparticle diffusion phenomena act as the rate-limiting step. Moreover, a proposed drug degradation mechanism based on the formation of hydroxyl free radicals is suggested, and LC–MS analysis identified fourteen intermediate products during drug degradation. At the same time, the antibacterial activity test showed that the generated degradation products were less toxic compared to the tetracycline molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Ma, M.X. Yang, F. Yu, J.H. Chen, J. Colloid Interface Sci. 444, 24 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Y. Fu, Y. Tang, W. Shi, F. Chen, F. Guo, C. Hao, Mater. Chem. Phys. 286, 126176 (2022)

    Article  CAS  Google Scholar 

  3. N. AttariKhasragh, K. Zare, A. Mehrizad, N. Modirshahla, M.A. Behnajady, J. Inorg. Organometal. Polym. Mat. 31, 3164 (2021)

    Article  Google Scholar 

  4. T. Fatima, S. Husain, M. Khanuja, J. Haz. Mat. Adv. 9, 100240 (2022)

    Google Scholar 

  5. S. Chelliapan, T. Wilby, P.J. Sallis, Water Res. 40, 507 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. I. Koyuncu, O.A. Arikan, M.R. Wiesner, J. Membr. Sci. 309, 94 (2008)

    Article  CAS  Google Scholar 

  7. K.J. Choi, J.H. Choi, E.H. Hwang, Y.W. Rhee, T.S. Hwang, Polymer 31, 247 (2007)

    CAS  Google Scholar 

  8. H. Sun, F. Guo, J. Pan, W. Huang, K. Wang, W. Shi, Chem. Eng. J. 406, 126844 (2021)

    Article  CAS  Google Scholar 

  9. W. Xiang, Q. Ji, C. Xu, Y. Guo, Y. Liu, D. Sun, W. Zhou, Z. Xu, C. Qi, S. Yang, S. Li, C. Sun, H. He, Appl. Catal. B Environ. 285, 119847 (2021)

    Article  CAS  Google Scholar 

  10. S. Alelyani, Y.N. Kavil, R. Farawati, M. Zobidi, M.A. Salam, Y. Shaban, Res. Chem. Intermed. 49, 1819 (2023)

    Article  CAS  Google Scholar 

  11. A. Mehrizad, M. Aghaie, P. Gharbani, S. Dastmalchi, M. Monajjemi, K. Zare, Iran. J. Environ. Health Sci. Eng. 9, 112 (2012)

    Article  Google Scholar 

  12. W. Remache, D.R. Ramos, L. Mammeri, H. Boucheloukh, Z. Marin, S. Belaidi, T. Sehili, J.A. Santaballa, M. Canle, J. Water Proc. Eng. 44, 102330 (2021)

    Article  Google Scholar 

  13. S. Malato, P. Fernandez-Ibañez, M.I. Maldonado, J. Blanco, W. Gernjak, Catal. Today 147(1), 1 (2009)

    Article  CAS  Google Scholar 

  14. E.P.M. Gonzalez, G.E. Diaz, S.A.S. Hernandez, J. Haz. Mat. 263, 73 (2013)

    Article  Google Scholar 

  15. C.J. Corwin, R.S. Summers, Water Res. 45, 417 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. T.A. Saleh, A. Sari, M. Tuzen, J. Environ. Chem. Eng. 5(1), 1079 (2017)

    Article  CAS  Google Scholar 

  17. C. Telegang Chekem, Y. Richardson, G. Plantard, J. Blin, V. Goetz, Waste Biomass Valorization 8, 2721 (2016)

    Article  Google Scholar 

  18. M.D. Sanchez, I.H. Benítez, D.D. Garcia, S. Prashar, S.G. Ruiz, Catal. Comm. 169, 106477 (2022)

    Article  Google Scholar 

  19. S. Ali, Z. Li, S. Chen, A. Zada, I. Khan, I. Khan, W. Ali, S. Shaheen, Y. Qu, L. Jing, Catal. Today 335, 557 (2019)

    Article  CAS  Google Scholar 

  20. G. Xu, W. Zhang, J. Du, X. Yuan, F.W. Zhang, W. Yan, G. Liu, J. Colloid Interface Sci. 622, 87 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. W.W. Loo, Y.L. Pang, S. Lim, K.H. Wong, C.W. Lai, A.Z. Abdullah, Chemosphere 272, 129588 (2021)

    Article  CAS  PubMed  Google Scholar 

  22. X. Zhang, B. Gao, A.E. Creamer, C. Cao, Y. Li, J. Hazard. Mater. 338, 102 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. F. Tavasola, T. Tabatabaiea, B. Ramavandi, F. Amiria, Chemosphere 284, 131337 (2021)

    Article  Google Scholar 

  24. S. Kumar, R. Sharma, A. Gupta, A.K. Dubey, A.M. Khan, R. Singhal, R. Kumar, A. Bharti, P. Singh, R. Kant, K. Kumar, Sci. Total. Environ. 845, 157221 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. K.A. Saharudin, S. Sreekantan, C.W. Lai, Mater. Sci. Semicond. Process. 20, 1 (2014)

    Article  CAS  Google Scholar 

  26. A.G. Trovo, V.A.B. de Paiva, A.E.H. Machado, C.A. de Oliveira, R.O. Santos, Sol. Energy 97, 596 (2013)

    Article  ADS  CAS  Google Scholar 

  27. H. Slimen, A. Houas, J.P. Nogier, J. Photochem. Photobiol. 221, 13 (2011)

    Article  CAS  Google Scholar 

  28. L. Miao, P. Jin, K. Kaneko, A. Terai, N. NabatovaGabain, S. Tanemura, Appl. Surf. Sci. 212, 255 (2003)

    Article  ADS  Google Scholar 

  29. M. Khairy, W. Zakaria, Egypt. J. Pet. 23, 419 (2014)

    Article  Google Scholar 

  30. Z.L. Zhu, A.M. Li, S.F. Zhong, Q. Liu, Q.X. Zhang, J. Appl. Polym. Sci. 109, 1692 (2008)

    Article  CAS  Google Scholar 

  31. Y. Ji, L. Zhou, C. Ferronato, X. Yang, A. Salvador, C. Zeng, J.M. Chovelon, J. Photochem. Photobiol. A: Chem. 254, 35 (2013)

    Article  CAS  Google Scholar 

  32. F. Venditti, F. Cuomo, A. Ceglie, P. Avino, M.V. Russo, F. Lopez, Langmuir 31, 3627 (2015)

    Article  CAS  PubMed  Google Scholar 

  33. N. Taoufik, A. Elmchaouri, F. Anouar, S.A. Korili, A. Gil, J. Water Proc. Eng. 31, 100876 (2016)

    Article  Google Scholar 

  34. Y. Liu, J. Li, X. Qiu, C. Burda, J. Photochem. Photobiol. A: Chem. 190(1), 94 (2007)

    Article  CAS  Google Scholar 

  35. P. Liu, L.C. Chung, C.H. Ho, H. Shao, T.M. Liang, R.Y. Horng, M.C. Chang, C.M. Ma, J. Colloid. Inter. Sci. 446, 352 (2020)

    Article  ADS  Google Scholar 

  36. W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Appl. Catal. B Environ. 69(3–4), 138 (2007)

    Article  CAS  Google Scholar 

  37. S. Wan, Z. Ma, Y. Xue, M. Ma, S. Xu, L. Qian, Q. Zhang, Ind. Eng. Chem. Res. 53, 3629 (2014)

    Article  CAS  Google Scholar 

  38. Y. Wu, Y. Li, H. Hu, G. Zeng, V. Li, ACS ES&T Eng. 1, 603 (2021)

    Article  CAS  Google Scholar 

  39. F. Dong, H. Wang, Z. Wu, J. Phys. Chem. C 113, 16717 (2009)

    Article  CAS  Google Scholar 

  40. E.D. Bel, J. Dewulf, B.D. Witte, H.V. Langenhove, C. Janseen, Chemosphere 77, 291 (2009)

    Article  ADS  PubMed  Google Scholar 

  41. M.M. Petrovic, F.S. Bianca, J.R. Aleksandra, Chemosphere 85, 1331 (2011)

    Article  PubMed  Google Scholar 

  42. Samaneh Kameli and Ali Mehrizad. Ultrasound-assisted Synthesis of Ag-ZnS/rGO and its Utilization in Photocatalytic Degradation of Tetracycline Under Visible Light Irradiation. Photochemistry and Photobiology (accepted) https://doi.org/10.1111/php.12998 (2023).

  43. M.J. Gomez, M.J. Martınez-Bueno, S. Lacorte, A.R. Fernandez-Alba, A. Aguera, Chemosphere 66, 993 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  44. A. Leonidas, S.M. Perez-Estrada, A.R. Ana, Catal. Today 129, 207 (2007)

    Article  Google Scholar 

  45. M. Duan, Z. Ding, H. Wang, Y. Xiong, Phys. Chem. Chem. Phys. 20, 5958 (2018)

    Article  CAS  PubMed  Google Scholar 

  46. P. Mehrizadand, P. Gharbani, Prog. Color Colorants Coat. 9, 135 (2016)

    Google Scholar 

  47. J. Chen, Y. Xiong, M. Duan, X. Li, J. Li, S. Fang, S. Qin, R. Zhang, Langmuir 36(2), 520 (2020)

    Article  CAS  PubMed  Google Scholar 

  48. S. Azizian, M. Bagheri, J. Mol. Liq. 196, 198 (2014)

    Article  CAS  Google Scholar 

  49. A. Sobhan, K. Muthukumarappan, L. Wei, Mater. Today Commun. 23, 101124 (2020)

    Article  CAS  Google Scholar 

  50. S. Hao, Z. Yan, K. Liu, J. Qiu, IEEE Trans. Plasma Sci. 48(2), 471 (2020)

    Article  ADS  CAS  Google Scholar 

  51. X. Ao, J. Eloranta, C. Wuang, D. Santoro, W. Sun, Z. Lu, Water Res. 188, 116479 (2021)

    Article  CAS  PubMed  Google Scholar 

  52. C. Tian, W. Huang, Z. Wei, C. Liang, Y. Dong, J. Shi, X. Zhang, G. Nong, S. Wang, J. Xue, New J. Chem. 47, 19646 (2023)

    Article  CAS  Google Scholar 

  53. C. Almeida, Ceram. Int. 43, 4411 (2016)

    Google Scholar 

  54. M. Cao, P. Wang, Y. Ao, C. Wang, J. Hou, J. Qian, J. Colloid Interface Sci. 467, 129 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  55. J. Cao, Z. Xiong, B. Lai, Chem. Eng. J. 343, 492 (2018)

    Article  CAS  Google Scholar 

  56. Y.Y. Chen, Y.L. Ma, J. Yang, L.Q. Wang, J.M. Lv, C.J. Ren, Chem. Eng. J. 307, 15 (2017)

    Article  CAS  Google Scholar 

  57. I. L. Finar, Stereochemistry and the Chemistry of Natural Products, vol 2, 5th edn, (Holloway, London, 2001) pp. 8–9

  58. D. Pathania, S. Sharma, P. Singh, Arab. J. Chem. 10, 1445 (2017)

    Article  Google Scholar 

  59. Z. Li, G. Wang, K. Zhai, C. He, Q. Li, P. Guo, Colloids Surf A Physicochem Eng Asp 538, 28 (2018)

    Article  CAS  Google Scholar 

  60. X. Liang, Y. Zhang, D. Li, B. Wen, D. Jiang, M. Chen, Appl. Surf. Sci. 466, 863 (2019)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank the central instruments facility (CIF) at the Indian Institute of Science Education and Research Bhopal (India) for providing the necessary research facilities. We also thank the Department of Biotechnology for supplying the bacteria (S. Epidermis) for antibacterial assay.

Author information

Authors and Affiliations

Authors

Contributions

AP: Wrote the manuscript, design of the work; or the acquisition, sample analysis and interpretation of data. VDD: Analysis, or interpretation of data and the creation of new software used in the work. SC: Part of the work have been investigated by him and was involved in all kind of procurement. MNG: Part of the work have been investigated and resolved by her. ASG (Corresponding author): Wrote the manuscript, Development the fundamental concept, design of the work; or the acquisition, sample analysis and interpretation of data.

Corresponding author

Correspondence to A. S. Giri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1040 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patidar, A., Dugyala, V.R., Chakma, S. et al. Reactive oxygen species aided photocatalytic degradation of tetracycline using non-metal activated carbon doped TiO2 nanocomposite under UV-light irradiation. Res Chem Intermed 50, 1035–1063 (2024). https://doi.org/10.1007/s11164-023-05203-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05203-3

Keywords

Navigation