Skip to main content

Advertisement

Log in

Towards an Efficient Purification Process of Nanostructured Materials: Investigation of Raw Tunisian Clay for Defluoridation of Natural Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This research work aims to introduce a new method of purifying clays and to assess the effectiveness of the retention of fluorine adsorption in local Tunisian clay using adsorption through a filtration membrane. Detailed chemical analysis was been carried out using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), liquid nitrogen adsorption desorption analyses by measuring the specific surface area (BET), scanning electron microscopy (SEM), and solid-state nuclear magnetic resonance (NMR) in order to compare the new elaborated purification approach to the classical method of preparation. The absence of the bands at 2510, 1796, 1426, and 712 cm−1 from the spectra of F3 and F5 as well as the absence of the endothermic peak up to 680 °C on the thermogram of OTNa(b), corroborated the departure of the calcite after purification. Oxide of aluminum, iron and magnesium increased respectively from (15.25, 5.72, and 2.52%) to (16.25, 6.26, and 2.78%) when compared to the classical method. Raw clay was used to treat fluoride in four types of drinking water. The adsorption kinetics confirmed the physisorption interaction between F ions and OT clay. Adsorbent equilibrium data were successfully described by the pseudo-second model (R2 = 0.989, 0.993, 0.988, 0.9798, 0.998) revealing maximum adsorption capacities of 1.131 mg g−1, 0.768 mg g−1, 0.856 mg g−1, 0.988 mg g−1, and 2.079 mg g−1, respectively. Furthermore, the synthesized solution offered easy and better adsorption with high efficiency (> 79%). This part of study sheds light on the effectiveness and feasibility of the raw carbonate clay in terms of the removal of fluoride ions from naturally contaminated water and synthesized aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The manuscript has not been published elsewhere. The article is not under consideration of any other journal in full or in part.

References

  • Adane, A. A. (2020). Development of kaolin clay as a cost-effective technology for defluoridation of groundwater. Hindawi, International Journal of Chemical Engineering, 2020, 8820727. https://doi.org/10.1155/2020/8820727

    Article  CAS  Google Scholar 

  • Agarwal, M., Rai, K., Shrivastav, R., & Dass, S. (2003). Defluoridation of water using amemded clay. Journal of Cleaner Production, 11, 439–444.

    Article  Google Scholar 

  • Amalraj, A., & Pius, A. (2017). Removal of fluoride from drinking water using aluminum hydroxide coated activated carbon prepared from bark of Morinda tinctoria. Applied Water Science, 7, 2653–2665. https://doi.org/10.1007/s13201-016-0479-z

    Article  CAS  Google Scholar 

  • Amari, A., Hlendi, M., Gannouni, A., & Bellagi, A. (2010). Optimised activation of bentonite for toluence adsorption. Applied Clay Science, 47, 457–461.

    Article  CAS  Google Scholar 

  • Andersen, M. D., Jakobsen, H. J., & Skibsted, J. (2006). A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy. Cement and Concrete Research, 36(1), 3–17.

    Article  CAS  Google Scholar 

  • Asaithambi, P., Beyene, D., Raman, A., Abdul Aziz, A. R., & Alemayehu, E. (2018). Removal of pollutants with determination of power consumption from landfill leachate wastewater using an electrocoagulation process: Optimization using response surface methodology (RSM). Applied Water Science, 8, 1–12. https://doi.org/10.1007/s13201-018-0715-9

    Article  CAS  Google Scholar 

  • Assaoui, J., Zineb Hatim, Z., & Kheribech, A. (2020). Synthesis and characterization of aluminum-based adsorbent and application in fluoride removal from aqueous solution. Mediterranean Journal of Chemistry, 10(1), 46–61.

    Article  CAS  Google Scholar 

  • Ayoob, S., Gupta, A. K., Bhakat, P. B., & Bhat, V. T. (2008). Investigations on the kinetics and mechanisms of sorptive removal of fluoride from water using alumina cement granules. Chemical Engineering Journal, 140, 6–14. https://doi.org/10.1016/j.cej.2007.08.029

    Article  CAS  Google Scholar 

  • Bannoud, A. H., & Darwich, Y. (2007). Elimination des ions fluorure et manganèse contenus dans les eaux par nanofiltration. Desalination, 206, 449–456.

    Article  CAS  Google Scholar 

  • Bergaya, F., & Lagaly, G. (2006). General introduction: Clays, clay minerals, and clay science. In F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Handbook of clay science: developments in clay science (Vol. 1, pp. 1–18). Elsevier. https://doi.org/10.1016/S1572-4352(05)01001-9

    Chapter  Google Scholar 

  • Bhatnagar, A. (2007). Removal of bromophenols from water using industrial wastes as low cost adsorbents. Journal of Hazardous Materials, 139(1), 93–102.

    Article  CAS  Google Scholar 

  • Brindley, G. W. (1966). Discussion and recommendation concerning the nomenclature of clay minerals and related phyllosilicates. Clay and Clay Minerals, 14, 27–34.

    Article  CAS  Google Scholar 

  • Capkova, P., Pospisil, M., Miehe-Brendleé, J., Trchova, M., Weiss, Z., & Le Dred, R. (2000). Montmorillonite and beidellite intercalated with tetramethylammonium cations. Journal of Molecular Modeling, 2000(6), 600–607. https://doi.org/10.1007/s0089400060600

    Article  Google Scholar 

  • Chen, D., Chen, J., Luan, X., Ji, H., & Xia, Z. (2011). Characterization of anion–cationic surfactants modified montmorillonite and its application for the removal of methyl orange. Chemical Engineering Journal, 171, 1150–1158.

    Article  CAS  Google Scholar 

  • Chidambaram. S, Ramanathan. AL, Vasudevan. S.(2003) Fluoride removal studies in water sing natural materials. Water SA 29(3), 339. Available on website http://www.wrc.org.za.

  • Chieng, H. L., Lim, L. B. L., & Priyantha, N. (2015). Sorption characteristics of peat from Brunei Darussalam for the removal of rhodamine B dye from aqueous solution: Adsorption isotherms, thermodynamics, kinetics and regeneration studies. Desalination and Water Treatment, 55, 664–677.

    Article  CAS  Google Scholar 

  • Chikuma, M., & Nishimura, M. (1990). Selective sorption of fluoride ions by anion-exchange resin modified with alizarin fluorine blue-praseodymium (III) complex. Journal of Reactive Polymers, 13, 131–138.

    Article  CAS  Google Scholar 

  • Daneshvar, E., Vazirzadeh, A., Niazi, A., et al. (2017). Desorption of methylene blue dye from brown macroalga: effects of operating parameters, isotherm study and kinetic modeling. Journal of Cleaner Production Volume, 152, 443–453. https://doi.org/10.1016/j.jclepro.2017.03.119

    Article  CAS  Google Scholar 

  • Dehghani, M. H., Farhang, M., Afsharnia, M., & Mckay, G. (2018). Adsorptive removal of fluoride from water by activated carbon derived from CaCl2- modified Crocus sativus leaves : Equilibrium adsorption isotherms, optimization, and influence of anions. Chemical Engineering Communications. https://doi.org/10.1080/00986445.2018.1423969

  • Dixon, J. B., & Weed, S. B. (1977). Kaolinite and serpentine group minerals. In J. B. Dixon & S. B. Weed (Eds.), Minerals in Soil Environments (pp. 357–398). Soil Science Society of America Inc.

    Google Scholar 

  • Dos Anjos, V. E., Rohwedder, J. R., Cadore, S., Abate, G., & Grassi, M. T. (2014). Montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: Adsorption and desorption studies of As, Ba, Cu, Cd Co, Cr, Mn, Ni, Pb, Sr, V, and Zn. Applied Clay Science, 99, 289–296.

    Article  CAS  Google Scholar 

  • Ekka, B., Dhaka, R. S., & Patel, R. K. (2017). Fluoride removal in waters using ionic liquid-functionalized alumina as a novel adsorbent. Journal of Cleaner Production, 151, 303–318.

    Article  CAS  Google Scholar 

  • Elazhar, F., Tahaikt, M., Achatei, A., Elmidaoui, F., Taky, M., El Hannouni, F., Laaziz, I., JaririS, E. I., Amrani, M., & Elmidaoui, A. (2009). Economical evaluation of the fluoride removal by nanofiltration. Desalination, 249, 154–157.

    Article  CAS  Google Scholar 

  • El-Gamal, S. M. A., Amin, M. S., & Ahmed, M. A. (2015). Removal of methyl orange and bromophenol blue dyes from aqueous solution using Sorel’s cement nanoparticles. Journal of Environmental Chemical Engineering, 3(3), 1702–1712.

    Article  CAS  Google Scholar 

  • Gamoudi, S., Frini-Srasra, N., & Srasra, E. (2012). Kinetic and equilibrium studies of fluoride sorption onto surfactant-modified smectites. Clay Minerals, 47, 429–440.

    Article  CAS  Google Scholar 

  • Ghaedi, M., GolestaniNasab, A., Khodadoust, S., Rajabi, M., & Azizian, S. (2014). Application of activated carbon as adsorbents for efficient removal of methylene blue: Kinetics and equilibrium study. Journal of Industrial and Engineering Chemistry, 20(4), 2317–2324. https://doi.org/10.1016/j.jiec.2013.10.007

    Article  CAS  Google Scholar 

  • Gunasekaran, S., & Anbalagan, G. (2007). Spectroscopic characterization of natural calcite Minerals. Spectrochimica Acta (Part A), 68, 656–664.

    Article  CAS  Google Scholar 

  • Hamdaoui, O., & Naffrechoux, E. (2007). Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part II. Models with more than two parameters. Journal of Hazardous Materials, 147, 401–411.

    Article  CAS  Google Scholar 

  • Ho, Y. S. (2006). Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods. Water Research, 40(1), 119–125.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 34, 735–742. https://doi.org/10.1016/S0043-1354(99)00232-8

    Article  CAS  Google Scholar 

  • Hubert, F., Caner, L., Meunier, A., & Lanson, B. (2009). Advances in the characterisation of soil clay mineralogy using X-ray diffraction: From decomposition to profile fitting. European Journal of Soil Science, 60, 1093–1105.

    Article  CAS  Google Scholar 

  • Jagtap, S., Yenkie, M. K., Labhsetwar, N., & Rayalu, S. (2012). Fluoride in drinking water and defluoridation of water. Chemical Reviews, 2012(112), 2454–2466.

    Article  Google Scholar 

  • Kamble, S. B., Discit, P., Rayalu, S. S., & Labhsetwar, N. K. (2009). Defluoridation of drinking water using chemically modified bentonite clay. Desalination, 249, 687–693.

    Article  CAS  Google Scholar 

  • Kamen, F. L., Igbokwe, P. K., Opebiyi, S. O., & Okolomike, R. O. (2013). Vapour-phase dehydrogenation of ethanol using heterogeneous modified Kaolinite catalyst. International Journal of Science and Engineering Investigations, 2(16).

  • Karoui, S., Ben Arfi, R., Mougin, K., Ghorbal, A., Assadi, A. A., & Amrane, A. (2020). Synthesis of novel biocomposite powder for simultaneous removal of hazardous ciprofloxacin and methylene blue: central composite design, kinetic and isotherm studies using Brouers- Sotolongofamily models. Journal of Hazardous Materials, 387, 121675. https://doi.org/10.1016/j.jhazmat.2019.121675

    Article  CAS  Google Scholar 

  • Karoui, S., Ben Arfi, R., María, J., Sanjurjo, F., Delgado, A. N., Ghorbal, A., & Álvarez-Rodríguez, E. (2021). Optimization of synergistic biosorption of oxytetracycline and cadmium from binary mixtures on reed-based beads: Modeling study using Brouers-Sotolongo models. Environmental Science and Pollution Research, 2021(28), 46431–46447. https://doi.org/10.1007/s11356-020-09493-7

    Article  CAS  Google Scholar 

  • Khallok, H., Zbair, M., Ojala, S., Ainassaari, K., BrahmiKeiski, R. R. L., & Hatim, Z. (2021). Ceramic hydroxyapatite foam as a new material for Bisphenol A removal from contaminated water. Environmental Science and Pollution Research, 2021(28), 17739–17751. https://doi.org/10.1007/s11356-020-12076-1

    Article  CAS  Google Scholar 

  • Kumar, P. S., Suganya, S., Srinivas, S., Priyadharshini, S., Karthika, M., Sri, R. K., Swetha, V., Naushad, M., & Lichtfouse, E. (2019). Treatment of fluoride-contaminated water. A review. Environmental Chemistry Letters, 2019(17), 1707–1726.

    Article  Google Scholar 

  • Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe. Google Scholar.

    Google Scholar 

  • LI, Z., & Bowman, R. S. (1998). Sorption of perchloroethylene by surfactant-modified zeolite as controlled by surfactant loading. Environmental Science and Technology, 32, 2278–2282.

    Article  Google Scholar 

  • LI, Z., & Bowman, R. S. (2001). Retention of inorganic oxyanions by organo-kaolinite. Water Research, 35(16), 3763–4010.

    Google Scholar 

  • Madejova, J., & Komadel, P. (2001). Baseline studies of the clay minerals society source clays: Infrared methods. Clays and Clay Minerals, 49(5), 410–432.

    Article  CAS  Google Scholar 

  • Mahjoubi, N., Araissi, M., Mhamdi, M., & laloui, E. (2022). Valorisation, characterisation and application of natural materials (zeolite and chert) as adsorbents for the removal of chromium(III) from an aqueous solution. Water, Air, & Soil Pollution, 233, 246. https://doi.org/10.1007/s11270-022-05723-5

    Article  CAS  Google Scholar 

  • Mazaheria, H., Ghaed, M., Asfarama, A., & Hajati, S. (2016). Performance of CuS nanoparticle loaded on activated carbon in the adsorption of methylene blue and bromophenol blue dyes in binary aqueous solutions: Using ultrasound power and optimization by central composite design. Journal of Molecular Liquids, 219, 667–676. http://www.elsevier.com/openaccess/userlicense/1.0/

    Article  Google Scholar 

  • McFarlane, A., Bremmell, K., & Addai-Mensah, J. (2006). Improved dewatering behavior of clay minerals dispersions via interfacial chemistry and particle interactions optimization. Journal of Colloid and Interface Science, 293, 116–127.

    Article  CAS  Google Scholar 

  • Merrikhpour, H., Mobarakpour, S., & Azimi, S. B. (2022). Adsorption of Cd2+, Cu2+, and Ni2+ onto surfactant modified bentonite. Desalination and Water Treatment. https://doi.org/10.5004/dwt.2022.28768

  • Mhamdi M, Gasmi N, Elaloui E, Kbir-Ariguib N, Trabelsi-Ayadi M. (2010a) Study of the mechanical properties of clay containing smectite and carbonate. IOP Conference Series: Materials Science and Engineering, 13, 012027. https://doi.org/10.1088/1757-899X/13/1/012027

  • Mhamdi, M., Gasmi, N., Elaloui, E., Kbir-Ariguib, N., & Trabelsi-Ayadi, M. (2010b). Purification and characterization of smectite clay taken from Gafsa, Tunisia: Progressive elimination of carbonates. IOP Conference Series : Materials Science and Engineering, 13(2010), 012030. https://doi.org/10.1088/1757-899X/13/1/012030

    Article  CAS  Google Scholar 

  • Mhamdi, M., Galai, H., Mnasri, N., Elaloui, E., & Trabelsi-Ayadi, M. (2012). Adsorption of lead onto smectite from aqueous solution. Environmental Science and Pollution Research, 20(2013), 1686–1697. https://doi.org/10.1007/s11356-012-1015-9

    Article  CAS  Google Scholar 

  • Mhamdi, M., Elaloui, E., & Trabelsi-Ayadi, M. (2013). Adsorption of zinc by a Tunisian Smectite through a filtration membrane. Industrial Crops and Products, 47, 204–211.

    Article  CAS  Google Scholar 

  • Mhamdi, M., Elaloui, E., & Trabelsi-Ayadi, M. (2014). Kinetics of cadmium adsorption by smectite of Oued Tfal (Gafsa Basin). Desalination and Water Treatment, 52(22–24), 4245–4256. https://doi.org/10.1080/19443994.2013.810371

    Article  CAS  Google Scholar 

  • Mihayo, D., Rao Vegi, M., & Hamad Vuai, S. A. (2021). Defluoridation of aqueous solution using thermally activated biosorbents prepared from Adansonia digitata fruit pericarp. Adsorption Science & Technology, 2021, 5574900. https://doi.org/10.1155/2021/5574900

    Article  CAS  Google Scholar 

  • Mnasri, S., & Srasra, N. F. (2018). A comparison of single and mixed pillared clays for zinc and chromium cations removal. Applied Clay Science, 158, 150–157. https://doi.org/10.1016/j.clay.2018.03.019

    Article  CAS  Google Scholar 

  • Mohammadzadeh, A., Ramezani, M., & Ghaedi, A. M. (2016). Synthesis and characterization of Fe2O3–ZnO–ZnFe2O4/carbon nanocomposite and its application to removal of bromophenol blue dye using ultrasonic assisted method : Optimization by response surface methodology and genetic algorithm. Journal of the Taiwan Institute of Chemical Engineers, 59(2016), 275–284. https://doi.org/10.1016/j.jtice.2015.07.034

    Article  CAS  Google Scholar 

  • Moore, D. M., & Reynolds, R. C. (1997). X-ray diffraction and the identification and analysis of clay minerals ((2nd ed.). ed.). Oxford University Press.

    Google Scholar 

  • Naushad, M., Vasudevan, S., Sharma, G., et al. (2015). Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin. Desalination and Water Treatment, 57, 18551–18559. https://doi.org/10.1080/19443994.2015.1090914

    Article  CAS  Google Scholar 

  • Naushad, M., Ahamad, T., & Al-Maswari, B. M. (2017). Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chemical Engineering Journal. https://doi.org/10.1016/j.cej.2017.08.079

  • Okada, K., Arimitsu, N. Y., Kameshima Nakajima, A., & MacKenzie, K. J. D. (2005). Solid acidity of 2:1 type clay minerals activated by selective leaching. Applied Clay Science, 31, 185–193. https://doi.org/10.1016/j.clay.2005.10.014

    Article  CAS  Google Scholar 

  • Pontié, M., Buisson, H., Diawara, C. K., & Essis-Tome, H. (2003). Studies of halide ions mass transfer in nanofiltration-application to selective defluorination of brackish drinking water. Desalination, 157, 127–134.

    Article  Google Scholar 

  • Poonam, M., Suja, G., & Dhiraj, M. (2014). Use of calcite for defluoridation of drinking water in acidic medium. Research Journal of Chemical Sciences, 4(6), 62–65 https://www.isca.me

    CAS  Google Scholar 

  • Pushpaletha, P., Rugmini, S., & Lalithambika, M. (2005). Correlation between surface properties and catalytic activity of clay catalysts. Applied Clay Science, 30(3–4), 141–153.

    Article  CAS  Google Scholar 

  • Ramdani, A., Taleb, S., Benghalem, A., & Ghaffour, N. (2010). Removal of excess fluoride ions from Saharan brackish water by adsorption on natural materials. Desalination, 250, 408–413.

    Article  CAS  Google Scholar 

  • Rytwo, G., Serban, C., Nir, S., & Margulies, L. (1991). Use of methylene blue and crystal violet for determination of ex-changebeable cations in momtmorionite. Clays and Clay Minerals, 39(5), 551–555.

    Article  CAS  Google Scholar 

  • Singh, K., Lataye, D. H., & Wasewar, K. L. (2016). Removal of fluoride from aqueous solution by using bael (Aegle marmelos) shell activated carbon: Kinetic, equilibrium and thermodynamic study. Journal of Fluorine Chemistry, 194, 23–32. https://doi.org/10.1016/j.jfluchem.2016.12.009

    Article  CAS  Google Scholar 

  • Stuel, M. S., & Vanleemput, L. (1982). Particules size distribution, cation exchange capacity and charge density of deferrated montmorillonite. Clay Minerals, 17(2), 209–215.

    Article  Google Scholar 

  • Turner, B. D., Binning, P., & Stipp, S. L. S. (2005). Fluoride removal by calcite: Evidence for fluorite precipitation and surface adsorption. Journal of Environmental Science and Technology, 39, 9561–9568.

    Article  CAS  Google Scholar 

  • Ubago-Perez, R., Carrasco-Marin, F., Fairer-Jimenez, D., & Moreno-Castilla, C. (2006). Granular and monolithic active carbons from KOH-activation of olive stones. Microporous and Mesoporous Materials, 92, 64–70.

    Article  CAS  Google Scholar 

  • World Health Organization. (2011). Guidelines for drinking-water quality - 4th ed. ISBN 978 92 4 154815 1. http://www.who.int

  • Xie, W., Xie, R. C., Pan, W. P., Hunter, D., Koene, B., Tan, L. S., & Vaia, R. (2002). Thermal stability of quaternary phosphonium modified montmorillonites. Chemistry of Materials, 14, 4837–4845. https://doi.org/10.1021/cm020705v

    Article  CAS  Google Scholar 

  • Zhanga, Q., Xionga, J., Cuia, X., Yanga, H., Dana, Z., Lua, X. B., & Bua, D. (2022). Defluoridation of geothermal water by adsorption onto activated sludge: Kinetics, isotherms and thermodynamics studies. Desalination and Water Treatment, 271(2022), 166–175. https://doi.org/10.5004/dwt.2022.28784

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks are extended to Professor Naceur Belgacem for his experimental help.

Funding

This work is financially supported by the Ministry of Higher Education, Scientific Research and Information and Communication Technologies Higher Education and Scientific Research sector of Tunisia.

Author information

Authors and Affiliations

Authors

Contributions

Mohsen Mhamdi and Najah Mahjoubi analyzed and interpreted the data and drafted the original manuscript. The draft was revised by Malika Ayadi as well as Elimame Elaloui. Mohsen Mhamdi was responsible for the guidance and verification of the manuscript. All authors read and approved of the final version of the manuscript.

Corresponding author

Correspondence to Mohsen Mhamdi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mhamdi, M., Mahjoubi, N., Azizi, M. et al. Towards an Efficient Purification Process of Nanostructured Materials: Investigation of Raw Tunisian Clay for Defluoridation of Natural Water. Water Air Soil Pollut 234, 234 (2023). https://doi.org/10.1007/s11270-023-06182-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-023-06182-2

Keywords

Navigation