Skip to main content
Log in

A Review of Modified Clay Minerals for Thallium Absorption from Aqueous Environment: Preparation, Application, and Mechanism

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Thallium is a highly toxic heavy metal element that can penetrate the human skin and still cause harm to the humans and the environment at low concentrations. Adsorption method is an effective environment-mature and mature method for treating wastewater containing thallium (Tl). The use of cheap adsorbents with large adsorption capacity will make the competitive advantage of adsorption more obvious. As an easy-to-obtain adsorbent, clay minerals are widely used in practical production due to their cheap and reliable advantages. Meanwhile, clay minerals are usually modified to improve their adsorption capacity for Tl. This paper summarizes different modification methods of clay minerals, including physical modification, inorganic chemical, organic modification, and pillared modification. Furthermore, the ion purification and metal inorganic doping are effective treatment methods of clay minerals for Tl removal. The main factors influencing Tl removal in water by clay minerals, such as initial metal concentration, solution pH, coexisting ions, and adsorbent type, are discussed in this paper. Moreover, the adsorption kinetics and adsorption isotherms of Tl by clay minerals are mainly reviewed, and the adsorption mechanism, mainly ion exchange and oxidative adsorption, is described in detail. The main purpose of this paper is to introduce the potential of natural as well as modified clay minerals for the adsorption of metals in wastewater to provide a more comprehensive perspective on Tl pollution treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Source: the top SEM image is from Toor et al. (2015); lower side mechanism diagram and SEM image from España et al. (2019)

Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study were included in this published article.

References

  • Addy, M., Losey, B., Mohseni, R., Zlotnikov, E., & Vasiliev, A. (2012). Adsorption of heavy metal ions on mesoporous silica modified montmorillonite containing a grafted chelate ligand. Applied Clay Science, 59-60, 115–120.

    Article  CAS  Google Scholar 

  • Akpomie, K. G., & Dawodu, F. A. (2016). Acid-modified montmorillonite for sorption of heavy metals from automobile effluent. Beni-Suef University Journal of Basic and Applied Sciences, 5, 1–12.

    Article  Google Scholar 

  • Aleš, V., Michael, K., Petra, V., Martin, M., Ondřej, Š, Gabriela, P., Vladislav, C., & Ondřej, D. (2011). Effect of illite and birnessite on thallium retention and bioavailability in contaminated soils. Journal of Hazardous Materials, 191, 170–176.

    Article  Google Scholar 

  • Amari, A., Gannouni, H., Khan, M., Almesfer, M., Elkhaleefa, A., & Gannouni, A. (2018). Effect of structure and chemical activation on the adsorption properties of green clay minerals for the removal of cationic dye. Applied Sciences, 8, 2302.

    Article  CAS  Google Scholar 

  • Amirnia, S., Ray, M. B., & Margaritis, A. (2015). Heavy metals removal from aqueous solutions using Saccharomyces cerevisiae in a novel continuous bioreactor–biosorption system. Chemical Engineering Journal, 264, 863–872.

    Article  CAS  Google Scholar 

  • Ayangbenro, A., & Babalola, O. (2017). A new strategy for heavy metal polluted environments: A review of microbial biosorbents. INT J ENV RES PUB HE, 14, 94.

    Article  Google Scholar 

  • Aytas, S., Yurtlu, M., & Donat, R. (2009). Adsorption characteristic of U(VI) ion onto thermally activated bentonite. Journal of Hazardous Materials, 172, 667–674.

    Article  CAS  Google Scholar 

  • Babanezhad, M., Behroyan, I., Taghvaie, N. A., Rezakazemi, M., Marjani, A., & Shirazian, S. (2020). Prediction of turbulence eddy dissipation of water flow in a heated metal foam tube. Scientific Reports, 10(1), 19280.

    Article  CAS  Google Scholar 

  • Baraka, S., Bouearan, K., Caner, L., Fontaine, C., Epron, F., Brahmi, R., & Bion, N. (2021). Catalytic performances of natural Nibearing clay minerals for production of syngas from dry reforming of methane. Journal of CO2 Utilization, 52, 101696.

    Article  CAS  Google Scholar 

  • Barakan, S., & Aghazadeh, V. (2021). The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: A review. ENVIRON SCI POLLUT R, 28, 2572–2599.

    Article  CAS  Google Scholar 

  • Bednarik, M., Mizera, A., Manas, M., Navratil, M., Huba, J., Achbergerova, E., & Stoklasek, P. (2021). Influence of the β-radiation/cold atmospheric-pressure plasma surface modification on the adhesive bonding of polyolefins. MATERIALS, 14, 76.

    Article  CAS  Google Scholar 

  • Belzile, N., & Chen, Y. (2017). Thallium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Applied Geochemistry, 84, 218–243.

    Article  CAS  Google Scholar 

  • Bhattacharyya, K. G., & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. ADV COLLOID INTERFAC, 140, 114–131.

    Article  CAS  Google Scholar 

  • Blanc, P., Gherardi, F., Vieillard, P., Marty, N. C. M., Gailhanou, H., Gaboreau, S., Letat, B., Geloni, C., Gaucher, E. C., & Madé, B. (2021). Thermodynamics for clay minerals: Calculation tools and application to the case of illite/smectite interstratified minerals. Applied Geochemistry, 130, 104986.

    Article  CAS  Google Scholar 

  • Bojemueller, E., Nennemann, A., Lagaly, G., & Lagaly, G. (2001). Enhanced pesticide adsorption by thermally modified bentonites. Applied Clay Science, 18, 277–284.

    Article  CAS  Google Scholar 

  • Bradbury, M. H., & Baeyens, B. (2000). A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks. Journal of Contaminant Hydrology, 42, 141–163.

    Article  CAS  Google Scholar 

  • Brown, K., Mendoza, M., Tinsley, T., Bee-DiGregorio, M. Y., Bible, M., Brooks, J. L., Colorado, M., Esenther, J., Farag, A., Gill, R., Kalivas, E. N., Lara, R., Lutz, A., Nazaire, J., Rasines Mazo, A., Rodriguez, R. S., Schwabacher, J. C., Zestos, A. G., Hartings, M. R., & Fox, D. M. (2021). Polyvinyl alcohol-montmorillonite composites for water purification: Analysis of clay mineral cation exchange and composite particle synthesis. Polyhedron, 205, 115297.

    Article  CAS  Google Scholar 

  • Cecilia, J., Pardo, L., Pozo, M., Bellido, E., & Franco, F. (2018). Microwave-assisted acid activation of clays composed of 2:1 clay minerals: A comparative study. MINERALS-BASEL, 8, 376.

    Google Scholar 

  • Chauhan, M., Saini, V. K., & Suthar, S. (2020). Enhancement in selective adsorption and removal efficiency of natural clay by intercalation of Zr-pillars into its layered nanostructure. Journal of Cleaner Production, 258, 120686.

    Article  CAS  Google Scholar 

  • Chen, M., Wu, P., Li, S., Yang, S., Lin, Z., & Dang, Z. (2019). The effects of interaction between vermiculite and manganese dioxide on the environmental geochemical process of thallium. Science of the Total Environment, 669, 903–910.

    Article  CAS  Google Scholar 

  • Choudhary, V. R., Tillu, V. H., Narkhede, V. S., Borate, H. B., & Wakharkar, R. D. (2003). Microwave assisted solvent-free synthesis of dihydropyrimidinones by Biginelli reaction over Si-MCM-41 supported FeCl3 catalyst. Catalysis Communications, 4, 449–453.

    Article  CAS  Google Scholar 

  • Corbin, G., Vulliet, E., Lanson, B., Rimola, A., & Mignon, P. (2021). Adsorption of pharmaceuticals onto smectite clay minerals: A combined experimental and theoretical study. Minerals, 11(1), 62.

    Article  CAS  Google Scholar 

  • Cruz-Hernández, Y., Villalobos, M., Marcus, M. A., Pi-Puig, T., Zanella, R., & Martínez-Villegas, N. (2019). Tl(I) sorption behavior on birnessite and its implications for mineral structural changes. GEOCHIM COSMOCHIM AC, 248, 356–369.

    Article  Google Scholar 

  • D’Orazio, M., Campanella, B., Bramanti, E., Ghezzi, L., Onor, M., Vianello, G., Vittori-Antisari, L., & Petrini, R. (2020). Thallium pollution in water, soils and plants from a past-mining site of Tuscany: Sources, transfer processes and toxicity. Journal of Geochemical Exploration, 209, 106434.

    Article  CAS  Google Scholar 

  • Deng, H., Chen, Y., Wu, H., Liu, T., Wang, Y., Wu, G., & Ye, H. (2016). Adsorption of Tl(I) on Na–montmorillonite and kaolinite from aqueous solutions. Environmental Earth Sciences, 75(9), 752. https://doi.org/10.1007/s12665-016-5570-0

    Article  CAS  Google Scholar 

  • Duan, W., Wang, Y., Li, Z., Fu, G., Mao, L., Song, Y., Qu, Y., Ye, L., Zhou, Q., Yang, F., Hu, Z., & Xu, S. (2020). Thallium exposure at low concentration leads to early damage on multiple organs in children: A case study followed-up for four years. Environmental Pollution, 258, 113319.

    Article  CAS  Google Scholar 

  • El Adraa, K., Georgelin, T., Lambert, J., Jaber, F., Tielens, F., & Jaber, M. (2017). Cysteine-montmorillonite composites for heavy metal cation complexation: A combined experimental and theoretical study. Chemical Engineering Journal, 314, 406–417.

    Article  Google Scholar 

  • El, O. M., Laabd, M., Abou, O. H., Brahmi, Y., Abaamrane, A., Elouahli, A., Ait, A. A., & Laknifli, A. (2019). Efficient removal of p-nitrophenol from water using montmorillonite clay: Insights into the adsorption mechanism, process optimization, and regeneration. Environmental Science and Pollution Research, 26, 19615–19631.

    Article  Google Scholar 

  • Erdem, B., Özcan, A., Gök, Ö., & Özcan, A. S. (2009). Immobilization of 2,2′-dipyridyl onto bentonite and its adsorption behavior of copper(II) ions. Journal of Hazardous Materials, 163, 418–426.

    Article  CAS  Google Scholar 

  • España, V. A. A., Sarkar, B., Biswas, B., Rusmin, R., & Naidu, R. (2019). Environmental applications of thermally modified and acid activated clay minerals: Current status of the art. Environmental Technology & Innovation, 13, 383–397.

    Article  Google Scholar 

  • Foroutan, R., Mohammadi, R., Adeleye, A. S., Farjadfard, S., Esvandi, Z., Arfaeinia, H., Sorial, G. A., Ramavandi, B., & Sahebi, S. (2019). Efficient arsenic(V) removal from contaminated water using natural clay and clay composite adsorbents. Environmental Science and Pollution Research, 26, 29748–29762.

    Article  CAS  Google Scholar 

  • Franco, F., Pozo, M., Cecilia, J. A., Benítez-Guerrero, M., Pozo, E., & Martín Rubí, J. A. (2014). Microwave assisted acid treatment of sepiolite: The role of composition and “crystallinity.” Applied Clay Science, 102, 15–27.

    Article  CAS  Google Scholar 

  • Franco, F., Pozo, M., Cecilia, J. A., Benítez-Guerrero, M., & Lorente, M. (2016). Effectiveness of microwave assisted acid treatment on dioctahedral and trioctahedral smectites. The influence of octahedral composition. Applied Clay Science, 120, 70–80.

    Article  CAS  Google Scholar 

  • Fuller, A. J., Shaw, S., Ward, M. B., Haigh, S. J., Mosselmans, J. F. W., Peacock, C. L., Stackhouse, S., Dent, A. J., Trivedi, D., & Burke, I. T. (2015). Caesium incorporation and retention in illite interlayers. Applied Clay Science, 108, 128–134.

    Article  CAS  Google Scholar 

  • Gainey, S. R., Hausrath, E. M., & Hurowitz, J. A. (2022). Thermodynamic and kinetic analysis of transitions in clay mineral chemistry on Mars. Icarus, 372(15), 114733.

    Article  CAS  Google Scholar 

  • García Carmona, J., Rodriguez Clemente, R., & Gómez Morales, J. (1997). Comparative preparation of microporous VPI-5 using conventional and microwave heating techniques. Zeolites, 18, 340–346.

    Article  Google Scholar 

  • Ghadiri, M., Hemmati, A., Nakhjiri, A. T., & Shirazian, S. (2020). Modelling tyramine extraction from wastewater using a non-dispersive solvent extraction process. Environmental Science and Pollution Research, 27, 39068–39076.

    Article  CAS  Google Scholar 

  • Ghiaci, M., Abbaspur, A., Kia, R., & Seyedeyn-Azad, F. (2004). Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM-41. Separation and Purification Technology, 40, 217–229.

    Article  CAS  Google Scholar 

  • Glatstein, D. A., & Francisca, F. M. (2015). Influence of pH and ionic strength on Cd, Cu and Pb removal from water by adsorption in Na-bentonite. Applied Clay Science, 118, 61–67.

    Article  CAS  Google Scholar 

  • Guerra, D. J. L., Mello, I., Resende, R., & Silva, R. (2013). Application as absorbents of natural and functionalized Brazilian bentonite in Pb2+ adsorption: Equilibrium, kinetic, pH, and thermodynamic effects. Water Resources and Industry, 4, 32–50.

    Article  Google Scholar 

  • He, H., Ma, L., Zhu, J., Frost, R. L., Theng, B. K. G., & Bergaya, F. (2014). Synthesis of organoclays: A critical review and some unresolved issues. Applied Clay Science, 100, 22–28.

    Article  CAS  Google Scholar 

  • He, X., Zhang, T., Xue, Q., Zhou, Y., Wang, H., Bolan, N. S., Jiang, R., & Tsang, D. C. W. (2021). Enhanced adsorption of Cu(II) and Zn(II) from aqueous solution by polyethyleneimine modified straw hydrochar. Science of the Total Environment, 778, 146116.

    Article  CAS  Google Scholar 

  • Ho, Y. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136, 681–689.

    Article  CAS  Google Scholar 

  • Ian, W. (2007). Applied clay mineralogy. Occurrences, processing and application of kaolins, bentonite, palygorskitesepiolite, and common clays. CLAY CLAY MINER, 55, 644–645.

    Article  Google Scholar 

  • Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Journal of Toxicology, 2018, 1–16.

    Article  Google Scholar 

  • Ijagbemi, C. O., Baek, M., & Kim, D. (2009). Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. Journal of Hazardous Materials, 166, 538–546.

    Article  CAS  Google Scholar 

  • Jia, Y., Xiao, T., Sun, J., Yang, F., & Baveye, P. C. (2018). Microcolumn-based speciation analysis of thallium in soil and green cabbage. Science of the Total Environment, 630, 146–153.

    Article  CAS  Google Scholar 

  • Kaplan, B., Rabinerson, D., Avrech, O. M., Carmi, N., Steinberg, D. M., & Merlob, P. (1998). Fracture of the clavicle in the newborn following normal labor and delivery. International Journal of Gynaecology and Obstetrics, 63, 15–20.

    Article  CAS  Google Scholar 

  • Kostenko, L. S., Tomashchuk, I. I., Kovalchuk, T. V., & Zaporozhets, O. A. (2019). Bentonites with grafted aminogroups: Synthesis, protolytic properties and assessing Cu(II), Cd(II) and Pb(II) adsorption capacity. Applied Clay Science, 172, 49–56.

    Article  CAS  Google Scholar 

  • Li, H., Chen, Y., Long, J., Li, X., Jiang, D., Zhang, P., Qi, J., Huang, X., Liu, J., Xu, R., & Gong, J. (2017). Removal of thallium from aqueous solutions using Fe-Mn binary oxides. Journal of Hazardous Materials, 338, 296–305.

    Article  CAS  Google Scholar 

  • Li, H., Li, X., Chen, Y., Long, J., Zhang, G., Xiao, T., Zhang, P., Li, C., Zhuang, L., & Huang, W. (2018). Removal and recovery of thallium from aqueous solutions via a magnetite-mediated reversible adsorption-desorption process. Journal of Cleaner Production, 199, 705–715.

    Article  CAS  Google Scholar 

  • Lin, H., Chuang, T., Yang, P., Guo, L., & Wang, S. (2021). Adsorption and desorption of Thallium(I) in soils: The predominant contribution by clay minerals. Applied Clay Science, 205, 106063.

    Article  CAS  Google Scholar 

  • Liu, J., Lippold, H., Wang, J., Lippmann-Pipke, J., & Yongheng, C. (2011). Sorption of thallium(I) onto geological materials: Influence of pH and humic matter. Chemosphere, 82(6), 866–871.

    Article  CAS  Google Scholar 

  • Liu, J., Luo, X., Sun, Y., Tsang, D. C. W., Qi, J., Zhang, W., Li, N., Yin, M., Wang, J., Lippold, H., Chen, Y., & Sheng, G. (2019). Thallium pollution in China and removal technologies for waters: A review. Environment International, 126, 771–790.

    Article  CAS  Google Scholar 

  • Luo, P., Tu, Y., Chan, T., Zhu, J., Duan, Y., Sun, T., & Zhang, Z. (2022). Adsorptive behavior of thallium using Fe3O4-kaolin composite synthesized by a room temperature ferrite process. Chemosphere, 296, 133899.

    Article  CAS  Google Scholar 

  • Malamis, S., & Katsou, E. (2013). A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. Journal of Hazardous Materials, 252–253, 428–461.

    Article  Google Scholar 

  • Marjani, A., Taghvaie Nakhjiri, A., Adimi, M., Fathinejad Jirandehi, H., & Shirazian, S. (2020). Modification of polyethersulfone membrane using MWCNT-NH2 nanoparticles and its application in the separation of azeotropic solutions by means of pervaporation'. PLOS ONE, 15, e236529.

    Article  Google Scholar 

  • Martin, L. A., Wissocq, A., Benedetti, M. F., & Latrille, C. (2018). Thallium (Tl) sorption onto illite and smectite: Implications for Tl mobility in the environment. GEOCHIM COSMOCHIM AC, 230, 1–16.

    Article  CAS  Google Scholar 

  • Mohamed, W. R., Sami, N. M., Metwally, S. S., & Saad, E. A. (2022). Surface modification of ball clay minerals with gamma irradiation polymerization for removal of cerium and gadolinium ions from aqueous phase. Hydrometallurgy, 208, 105816.

    Article  CAS  Google Scholar 

  • Moussaoui, H., Bahammou, Y., Idlimam, A., Lamharrar, A., & Abdenouri, N. (2019). Investigation of hygroscopic equilibrium and modeling sorption isotherms of the argan products: A comparative study of leaves, pulps, and fruits. Food and Bioproducts Processing, 114, 12–22.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., & Wang, S. (2006). Remediation of a heavy metal-contaminated soil by a rhamnolipid foam. Engineering Geology, 85, 75–81.

    Article  Google Scholar 

  • Natalia, O., Pawel, B., Monika, S., & Beata, K. (2015). TlI and TlIII presence in suspended particulate matter: speciation analysis of thallium in wastewater. Environmental Chemistry, 12(3), 374–379.

    Article  Google Scholar 

  • Peter, A. L. J., & Viraraghavan, T. (2005). Thallium: A review of public health and environmental concerns. Environment International, 31, 493–501.

    Article  CAS  Google Scholar 

  • Ruiz-García, M., Villalobos, M., Antelo, J., & Martínez-Villegas, N. (2022). Tl(I) adsorption behavior on K-illite and on humic acids. Applied Geochemistry, 138, 105220.

    Article  Google Scholar 

  • Salari, M., Sowti, K. M., Rezaei, M. R., Ghanbarzadeh, B., & Samadi, K. H. (2021). Use of gamma irradiation technology for modification of bacterial cellulose nanocrystals/chitosan nanocomposite film. Carbohydrate Polymers, 253, 117144.

    Article  CAS  Google Scholar 

  • Sarı, A., & Tuzen, M. (2009). Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. Journal of Hazardous Materials, 164, 1004–1011.

    Article  Google Scholar 

  • Sarkar, B., & XIMegharajKrishnamurti Bowman Rose NAIDU, Y. M. G. S. R. M. H. R. (2012). Bioreactive organoclay: A new technology for environmental remediation. CRIT REV ENV SCI TEC, 42, 435–488.

    Article  CAS  Google Scholar 

  • Shawabkeh, R. A., Al-Khashman, O. A., Al-Omari, H. S., & Shawabkeh, A. F. (2007). Cobalt and zinc removal from aqueous solution by chemically treated bentonite. The Environmentalist, 27, 357–363.

    Article  Google Scholar 

  • Singh, N. B., Garima, N., Sonal, A., & Rachna. (2018). Water purification by using adsorbents: A review. Environmental Technology & Innovation, 11, 187–240.

    Article  Google Scholar 

  • Sinyakova, M. A., Semenova, E. A., & Gamuletskaya, O. A. (2014). Ion exchange of copper(II) lanthanum(III) thallium(I) and mercury(II) on the “polysurmin” substance. Russian Journal of General Chemistry, 84(13), 2516–2520.

    Article  CAS  Google Scholar 

  • Somayeh, T., & Jaleh, V. (2016). Effect of different types of surfactants on the physical properties and stability of carvedilol nano-niosomes. Advanced Biomedical Research, 5, 48.

    Article  Google Scholar 

  • Stathi, P., Litina, K., Gournis, D., Giannopoulos, T. S., & Deligiannakis, Y. (2007). Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation. Journal of Colloid and Interface Science, 316(2), 298–309.

    Article  CAS  Google Scholar 

  • Sulaiman, S., Azis, R. A. S., Ismail, I., Man, H. C., Yusof, K. F. M., Abba, M. U., & Katibi, K. K. (2021). Adsorptive removal of copper (II) ions from aqueous solution using a magnetite nano-adsorbent from mill scale waste: Synthesis, characterization, adsorption and kinetic modelling studies. Nanoscale Research Letters, 16, 168.

    Article  CAS  Google Scholar 

  • Suprakas, S. R., & Masami, O. (2003). Polymer/layered silicate nanocomposites: A review from preparation to processing. Progress in Polymer Science, 28, 1539–1641.

    Article  Google Scholar 

  • Susmita, S. G., & Krishna, G. B. (2007). Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Journal of Environmental Management, 87, 46–58.

    Google Scholar 

  • Tong, J., Liang, C., Wu, X., Huang, K., Zhu, B., Gao, H., Zhu, Y., Li, Z., Qi, J., Han, Y., Ding, P., Zhu, Y., & Tao, F. (2022). Prenatal serum thallium exposure and cognitive development among preschool-aged children: A prospective cohort study in China. Environmental Pollution, 293, 118545.

    Article  CAS  Google Scholar 

  • Toor, M., Jin, B., Dai, S., & Vimonses, V. (2015). Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater. Journal of Industrial and Engineering Chemistry, 21, 653–661.

    Article  CAS  Google Scholar 

  • Torres-Luna, J. A., & Carriazo, J. G. (2019). Porous aluminosilicic solids obtained by thermal-acid modification of a commercial kaolinite-type natural clay. Solid State Sciences, 88, 29–35.

    Article  CAS  Google Scholar 

  • Vaněk, A., Grygar, T., Chrastný, V., Tejnecký, V., Drahota, P., & Komárek, M. (2010). Assessment of the BCR sequential extraction procedure for thallium fractionation using synthetic mineral mixtures. Journal of Hazardous Materials, 176, 913–918.

    Article  Google Scholar 

  • Vengris, T., Binkien, R., & Sveikauskait, A. (2001). Nickel copper and zinc removal from waste water by a modified clay sorbent. Applied Clay Science, 18(3-4), 183–190.

    Article  CAS  Google Scholar 

  • Vicentius, O. A., Kiki, T., & Jaka, S. (2008). Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: Characterization, biosorption parameters and mechanism studies. Clean - Soil, Air, Water: A Journal of Sustainability and Environmental Safety, 36, 937–962.

    Article  Google Scholar 

  • Vincent, T., Taulemesse, J., Dauvergne, A., Chanut, T., Testa, F., & Guibal, E. (2014). Thallium(I) sorption using Prussian blue immobilized in alginate capsules. Carbohydrate Polymers, 99, 517–526.

    Article  CAS  Google Scholar 

  • Voegelin, A., Pfenninger, N., Petrikis, J., Majzlan, J., Plötze, M., Senn, A., Mangold, S., Steininger, R., & Göttlicher, J. (2015). Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock. Environmental Science and Technology, 49, 5390–5398.

    Article  CAS  Google Scholar 

  • Voegelin, A., Wick, S., Pfenninger, N., Mangold, S., Baeyens, B., & Fernandes, M. M. (2022). Thallium adsorption onto phyllosilicate minerals. Environmental Science: Processes & Impacts, 24, 1343–1359.

    CAS  Google Scholar 

  • Volzone, C. (2007). Retention of pollutant gases: Comparison between clay minerals and their modified products. Applied Clay Science, 36, 191–196.

    Article  CAS  Google Scholar 

  • Wan, S., Ma, M., Lv, L., Qian, L., Xu, S., Xue, Y., & Ma, Z. (2014). Selective capture of thallium(I) ion from aqueous solutions by amorphous hydrous manganese dioxide. Chemical Engineering Journal, 239, 200–206.

    Article  CAS  Google Scholar 

  • Wang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24, 427–451.

    Article  CAS  Google Scholar 

  • Wang, X. S., Hu, H. Q., & Sun, C. (2007). Removal of copper (II) ions from aqueous solutions using Na-mordenite. Separation Science and Technology, 42, 1215–1230.

    Article  CAS  Google Scholar 

  • Wang, Y., Gong, Y., Lin, N., Yu, L., Du, B., & Zhang, X. (2022). Enhanced removal of Cr(VI) from aqueous solution by stabilized nanoscale zero valent iron and copper bimetal intercalated montmorillonite. J COLLOID INTERF SCI, 606, 941–952.

    Article  CAS  Google Scholar 

  • Węgiel, K., Jedlińska, K., & Baś, B. (2016). Application of bismuth bulk annular band electrode for determination of ultratrace concentrations of thallium(I) using stripping voltammetry. Journal of Hazardous Materials, 310, 199–206.

    Article  Google Scholar 

  • Wick, S., Baeyens, B., Marques Fernandes, M., & Voegelin, A. (2018). Thallium adsorption onto illite. Environmental Science and Technology, 52, 571–580.

    Article  CAS  Google Scholar 

  • Wick, S., Baeyens, B., Marques Fernandes, M., Göttlicher, J., Fischer, M., Pfenninger, N., Plötze, M., & Voegelin, A. (2020). Thallium sorption and speciation in soils: Role of micaceous clay minerals and manganese oxides. GEOCHIM COSMOCHIM AC, 288, 83–100.

    Article  CAS  Google Scholar 

  • Xiang, G., Ye, W., Xu, Y., & Jalal, F. E. (2020). Swelling deformation of Na-bentonite in solutions containing different cations. Engineering Geology, 277, 105757.

    Article  Google Scholar 

  • Xie, X., & Cheng, H. (2020). Adsorption and desorption of phenylarsonic acid compounds on metal oxide and hydroxide, and clay minerals. Science of the Total Environment, 757, 143765.

    Article  Google Scholar 

  • Xiong, Y. (2009). The aqueous geochemistry of thallium: speciation and solubility of thallium in low temperature systems. Environmental Chemistry, 6(5), 441–451.

    Article  CAS  Google Scholar 

  • Xu, Y., Xiang, G., Jiang, H., Chen, T., & Chu, F. (2014). Role of osmotic suction in volume change of clays in salt solution. Applied Clay Science, 101, 354–361.

    Article  CAS  Google Scholar 

  • Xu, H., Luo, Y., Wang, P., Zhu, J., Yang, Z., & Liu, Z. (2019). Removal of thallium in water/wastewater: A review. Water Research, 165, 114981.

    Article  CAS  Google Scholar 

  • Ye, W., Zhang, F., Chen, Y., Chen, B., & Cui, Y. (2017). Influences of salt solutions and salinization-desalinization processes on the volume change of compacted GMZ01 bentonite. Engineering Geology, 222, 140–145.

    Article  Google Scholar 

  • Zaki, M., Maulana, A., Tirtayani, F., Alam, P., & N., Husin, H. (2019). Nano-bentonite as a low-cost adsorbent for removal of mercury from aqueous solution. Journal of Physics: Conference Series, 1402, 055010.

    CAS  Google Scholar 

  • Zhang, G., Lin, Y., & Wang, M. (2011). Remediation of copper polluted red soils with clay materials. Journal of Environmental Sciences (china), 23, 461–467.

    Article  CAS  Google Scholar 

  • Zhang, S., Gong, X., Shen, Z., Yuan, S., Jiang, L., & Wang, G. (2020). Study on remediation of Cd-contaminated soil by thermally modified attapulgite combined with ryegrass. SOIL SEDIMENT CONTAM, 29, 680–701.

    Article  CAS  Google Scholar 

  • Zhou, C. H., & Keeling, J. (2013). Fundamental and applied research on clay minerals: From climate and environment to nanotechnology. Applied Clay Science, 74, 3–9.

    Article  CAS  Google Scholar 

  • Zhou, Y., & Richard, J. H. (2010). Sorption of heavy metals by inorganic and organic components of solid wastes: Significance to use of wastes as low-cost adsorbents and immobilizing agents. CRIT REV ENV SCI TEC, 40, 909–977.

    Article  CAS  Google Scholar 

  • Zhuang, W., Liu, M., Song, J., & Ying, S. C. (2021). Retention of thallium by natural minerals: A review. Science of the Total Environment, 777, 146074.

    Article  CAS  Google Scholar 

  • Zhuo, Z., Yanhang, X., Xiankun, C., Xue, H., Yongxiang, Y., Yongpan, T., Jinglin, Y., & Liang, X. (2020). Adsorptive removal of trace thallium(I) from wastewater: A review and new perspectives. Journal of Hazardous Materials, 393, 122378.

    Article  Google Scholar 

  • Zotiadis, V., & Argyraki, A. (2017). Development of innovative environmental applications of attapulgite clay. Bulletin of the Geological Society of Greece, 47, 992–1001.

    Article  Google Scholar 

Download references

Funding

This study was funded by the National Key R&D Program of China (2019YFC1805001) and the National Natural Science Foundation of China (51874018).

Author information

Authors and Affiliations

Authors

Contributions

YD: conceptualization, supervision, and revision. PZ: literature collection and arrangement, and writing the original draft. HL: supervision. All authors participated and approved the final manuscript to be published.

Corresponding author

Correspondence to Hai Lin.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Modified clay minerals can effectively remove thallium from water environment.

• The modification methods and principles of clay minerals are reviewed.

• Influencing factors and mechanism of Tl adsorption by clay minerals were discussed.

• The future directions of clay mineral to adsorb Tl were discussed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Zhang, P. & Lin, H. A Review of Modified Clay Minerals for Thallium Absorption from Aqueous Environment: Preparation, Application, and Mechanism. Water Air Soil Pollut 233, 532 (2022). https://doi.org/10.1007/s11270-022-05987-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05987-x

Keywords

Navigation