Skip to main content
Log in

Biomarkers’ Responses in Neotropical Freshwater Fish Living in Southern Brazil: Agricultural Activity or Seasonal Interference?

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Brazil has been leading the consumer market for pesticides, mainly due to greater flexibility in registration for agricultural use. The constant application of chemicals increases the likelihood of contaminating adjacent aquatic environments. Furthermore, fluctuations in abiotic variables, especially in subtropical countries, can enhance the effects of pesticides on the aquatic community. The aims of the current study are to investigate the incidence of pesticides in a river in southern Brazil and to evaluate the water quality and toxicity biomarkers on fish species Astyanax jacuhiensis (Cope, 1894), in different crop seasons. Water, sediment, and fish samples were collected in the summer, autumn, and winter of 2019. The herbicides atrazine and clomazone and insecticide imidacloprid were identified in water throughout the sampling period—only atrazine has the maximum concentration established for surface water by Brazilian legislation. Redundancy analysis (RDA) mainly showed the effects of seasonality on biochemical responses such as pH and water temperature. Also, most A. jacuhiensis biomarkers alterations were associated with winter and autumn periods. Furthermore, it was possible to verify the relationship between non-enzymatic antioxidants (non-protein thiols) and oxidative damage (lipid peroxidation and protein carbonylation). Therefore, the results of pesticides detected in water emphasize the need to update Brazilian legislation for compounds registered in the country. Changes in the physicochemical variables of water can influence the responses of biomarkers in addition to pesticides. Finally, biomonitoring studies are important and necessary mainly in subtropical regions where there is variation in climatic conditions between periods of the year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    Article  CAS  Google Scholar 

  • Albuquerque, A. F., Ribeiro, J. S., Kummrow, F., Nogueira, J. Á., Montagner, C. C., & Umbuzeiro, G. A. (2016). Pesticides in Brazilian freshwaters: A critical review. Environmental Science. Processes & Impacts, 18, 779–787. https://doi.org/10.1039/c6em00268d

    Article  CAS  Google Scholar 

  • Amaral, A. M. B., Gomes, J. L. C., Weimer, G. H., Marins, A. T., Loro, V. L., & Zanella, R. (2018). Seasonal implications on toxicity biomarkers of Loricariichthys anus (Valenciennes, 1835) from a subtropical reservoir. Chemosphere, 191, 876–885. https://doi.org/10.1016/j.chemosphere.2017.10.114

    Article  CAS  Google Scholar 

  • Amaral, A. M. B., Moura, L. K., Pellegrin, D., Guerra, L. J., Cerezer, F. O., Saibt, N., Prestes, O. D., Zanella, R., Loro, V. L., & Clasen, B. (2020). Seasonal factors driving biochemical biomarkers in two fish species from a subtropical reservoir in southern Brazil: An integrated approach. Environmental Pollution, 266, 115168. https://doi.org/10.1016/j.envpol.2020.115168

    Article  CAS  Google Scholar 

  • APHA. Standard Methods for the Examination of water and wastewater. 22 nd edition. American Public Health Association, American Water Works Association, Water Environmental Federation. Edited by: Eugene W. Rice, Rodger B. Baird, Andrew D. Eaton, Lenore S. Clesceri. 2012

  • Barata, C., Damasio, J., López, M. A., Kuster, M., López de Alda, M., Barceló, D., Riva, M. C., & Raldúa, D. (2007). Combined use of biomarkers and in situ bioassays in Daphnia magna to monitor environmental hazards of pesticides in the field. Environmental Toxicology and Chemistry, 26, 370. https://doi.org/10.1897/06-209r.1

    Article  CAS  Google Scholar 

  • Barreto, S., Herman, L., & Garibotti, V. (2012). Levantamento dos Agrotóxicos Usados no Estado do Rio Grande do Sul por Bacia Hidrográfica. Bol Epidemiol, 14, 3–6.

    Google Scholar 

  • Becker, A. G., Moraes, B. S., Menezes, C. C., Loro, V. L., Santos, D. R., Reichert, J. M., & Baldisserotto, B. (2009). Pesticide contamination of water alters the metabolism of juvenile silver catfish, Rhamdia quelen. Ecotoxicology and Environmental Safety, 72, 1734–1739. https://doi.org/10.1016/j.ecoenv.2009.01.006

    Article  CAS  Google Scholar 

  • Bender, M. A., Santos, D. R., Tiecher, T., Minella, J. P. G., Barros, C. A. P., & Ramon, R. (2018). Phosphorus dynamics during storm events in a subtropical rural catchment in southern Brazil. Agriculture, Ecosystems & Environment, 261, 93–102. https://doi.org/10.1016/j.agee.2018.04.004

    Article  CAS  Google Scholar 

  • Bergmann, F. B., Amaral, A. M. B., Volcan, M. V., Leitemperger, J. W., Zanella, R., Prestes, O. D., Clasen, B., Guadagnin, D. L., & Loro, V. L. (2020). Organic and conventional agriculture: Conventional rice farming causes biochemical changes in Astyanax lacustris. Science of the Total Environment, 744, 140820. https://doi.org/10.1016/j.scitotenv.2020.140820

    Article  CAS  Google Scholar 

  • Beyer, J., Peterson, K., Song, Y., Ruus, A., Grung, M., Bakke, T., & Tollefsen, K. E. (2014). Environmental risk assessment of combined effects in aquatic ecotoxicology: A discussion paper. Marine Environment Research, 96, 81–91. https://doi.org/10.1016/j.marenvres.2013.10.008

    Article  CAS  Google Scholar 

  • Bombardi LM (2017) Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia. - São Paulo: FFLCH - USP

  • Botelho, R. G., Monteiro, S. H., Christofoletti, C. A., Moura-Andrade, C. R., & Tornisielo, V. L. (2015). Environmentally Relevant Concentrations of Atrazine and Ametrine Induce Micronuclei Formation and Nuclear Abnormalities in Erythrocytes of Fish. Archives of Environmental Contamination and Toxicology, 69, 577–585. https://doi.org/10.1007/s00244-015-0171-6

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  • Bueno-Krawczyk, A. C. D., Guiloski, I. C., Piancini, L. D. S., Azevedo, J. C., Ramsdorf, W. A., Ide, A. H., Guimarães, A. T. B., Cestari, M. M., & Silva de Assis, H. C. (2015). Multibiomarker in fish to evaluate a river used to water public supply. Chemosphere, 135, 257–264. https://doi.org/10.1016/j.chemosphere.2015.04.064

    Article  CAS  Google Scholar 

  • Carvalho, C. S., Bernusso, V. A., & Fernandes, M. N. (2015). Copper levels and changes in pH induce oxidative stress in the tissue of curimbata (Prochilodus lineatus). Aquatic Toxicology, 167, 220–227. https://doi.org/10.1016/j.aquatox.2015.08.003

    Article  CAS  Google Scholar 

  • Cattaneo, R., Moraes, B. S., Loro, V. L., Pretto, A., Menezes, C., Sartori, G. M. S., Clasen, B., Avila, L. A., Marchesan, E., & Zanella, R. (2011). Tissue Biochemical Alterations of Cyprinus carpio Exposed to Commercial Herbicide Containing Clomazone Under Rice-Field Conditions. Archives of Environmental Contamination and Toxicology, 62, 97–106. https://doi.org/10.1007/s00244-011-9669-8

    Article  CAS  Google Scholar 

  • Cerezer, C., Marins, A. T., Cerezer, F. O., Severo, E. S., Leitemperger, J. W., Grubel Bandeira, N. M., Zanella, R., Loro, V. L., & Santos, S. (2020). Influence of pesticides and abiotic conditions on biochemical biomarkers in Aegla aff longirostri (crustacea, anomura): Implications for conservation. Ecotoxicol Environ Saf, 203, 110982. https://doi.org/10.1016/j.ecoenv.2020.110982

    Article  CAS  Google Scholar 

  • Companhia Ambiental do Estado de São Paulo – CETESB (2011) Guia nacional de coleta e preservação de amostras: água, sedimento, comunidades aquáticas e efluentes líquidos/Companhia Ambiental do Estado de São Paulo; Organizadores: Carlos Jesus Brandão ... [et al.]. -- São Paulo: CETESB; Brasília: ANA. Accessed 10 June 2020

  • Choudhary, S., Yamini, R. N., Yadav, S. K., Kamboj, M. L., & Sharma, A. (2008). A review: Pesticide residue: Cause of many animal health problems. J Entomol Zool Stud, 6, 330–333.

    Google Scholar 

  • CONAMA - Conselho Nacional do Meio Ambiente. Resolução nº 357, de 17 de março de 2005 (2005) Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. <http://www.mma.gov.br/port/conama/res/res05/res35705.pdf>. Accessed 15 June 2020

  • Costa-Silva, D., Nunes, M. E. M., Wallau, G. L., Martins, I. K., Zemolin, A. P. P., Cruz, L. C., Rodrigues, N. R., Lopes, A. R., Posser, T., & Franco, J. L. (2015). Oxidative stress markers in fish (Astyanax sp. and Danio rerio) exposed to urban and agricultural effluents in the Brazilian Pampa biome. Environmental Science and Pollution Research, 22, 15526–15535. https://doi.org/10.1007/s11356-015-4737-7

    Article  CAS  Google Scholar 

  • Dabrowski, J. M., Shadung, J. M., & Wepener, V. (2014). Prioritizing agricultural pesticides used in South Africa based on their environmental mobility and potential human health effects. Environment International, 62, 31–40.

    Article  CAS  Google Scholar 

  • Dala-Cort, R. B., & Azevedo, M. A. (2010). Biologia reprodutiva de Astyanax henseli (Teleostei, Characidae) do curso superior do rio dos Sinos, RS, Brasil. Iheringia Ser Zool, 100, 259–266. https://doi.org/10.1590/S0073-47212010000300012

    Article  Google Scholar 

  • Draper, H. H., & Hadley, M. (1990). Malondialdehyde determination as index of lipid peroxidation. Methods in Enzymology, 186, 421–431.

    Article  CAS  Google Scholar 

  • Elibariki, R., & Maguta, M. M. (2017). Status of pesticides pollution in Tanzania – A review. Chemosphere, 178, 154–164. https://doi.org/10.1016/j.chemosphere.2017.03.036

    Article  CAS  Google Scholar 

  • Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77.

    Article  CAS  Google Scholar 

  • Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.

    Article  CAS  Google Scholar 

  • Feix RD, Leusin Júnior S, Agranonik C (2016) Painel do agronegócio no Rio Grande do Sul — 2016. In: Painel do Agronegócio no Rio Grande do Sul - 2016

  • Freire, C. A., Souza-Bastos, L. R., Chiesse, J., Tincani, F. H., Piancini, L. D. S., Randi, M. A. F., Prodocimo, V., Cestari, M. M., Silva-de-Assis, H. C., Abilhoa, V., Vitule, J. R. S., Bastos, L. P., & Oliveira-Ribeiro, C. A. (2015). A multibiomarker evaluation of urban, industrial, and agricultural exposure of small characins in a large freshwater basin in southern Brazil. Environmental Science and Pollution Research, 22, 13263–13277. https://doi.org/10.1007/s11356-015-4585-5

    Article  CAS  Google Scholar 

  • Ghisi, N. C., Oliveira, E. C., Fávaro, L. F., Assis, H. C. S., & Prioli, A. J. (2014). In situ assessment of a Neotropical fish to evaluate pollution in a river receiving agricultural and urban wastewater. Bulletin of Environment Contamination and Toxicology, 93, 699–709. https://doi.org/10.1007/s00128-014-1403-6

    Article  CAS  Google Scholar 

  • Ghisi, N. C., Oliveira, E. C., Guiloski, I. C., Lima, S. B., Assis, H. C. S., & Longhi, S. J. (2017). Prioli A (2017) Multivariate and integrative approach to analyze multiple biomarkers in ecotoxicology: A field study in Neotropical region. Science of the Total Environment, 609, 1208–1218. https://doi.org/10.1016/j.scitotenv.2017.07.266

    Article  CAS  Google Scholar 

  • Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130–7139.

    Article  CAS  Google Scholar 

  • Hirt, L. M., Araya, P. R., & Flores, A. S. (2011). Population structure, reproductive biology and feeding of Astyanax fasciatus (Cuvier, 1819) in an Upper Paraná River tributary, Misiones, Argentina. Acta Limnologica Brasiliensia, 23, 1–12. https://doi.org/10.4322/actalb.2011.013

    Article  Google Scholar 

  • Holvoet, K. M. A., Seuntjens, P., & Vanrolleghem, P. A. (2007). Monitoring and modeling pesticide fate in surface waters at the catchment scale. Ecological Modelling, 209, 53–64. https://doi.org/10.1016/j.ecolmodel.2007.07.030

    Article  CAS  Google Scholar 

  • Instituto Brasileiro de Geografia e Estatística – IBGE (2019) Produção agrícola – Lavoura temporária. <https://cidades.ibge.gov.br/brasil/rs/pesquisa/14/10193>. Accessed 01 June 2020

  • Instituto Nacional de Meteorologia – INMET (2019) Estações automáticas - gráficos. <http://www.inmet.gov.br/portal/index.php?r=home/page&page=rede_estacoes_auto_graf> Accessed 01 June 2020

  • Jablonowski, N. D., & Schäffer, A. (2011). Still present after all these years: Persistence plus potential toxicity raise questions about the use of atrazine. Environmental Science and Pollution Research, 18, 328–331. https://doi.org/10.1007/s11356-010-0431-y

    Article  CAS  Google Scholar 

  • Jeschke, P., Nauen, R., Schindler, M., & Elbert, A. (2011). Overview of the status and global strategy for neonicotinoids. Journal of Agriculture and Food Chemistry, 59, 2897–2908. https://doi.org/10.1021/jf101303g

    Article  CAS  Google Scholar 

  • Jonsson, C. M., Maia, A. H. N., Ferreira, C. J. A., & Ribeiro, E. O. (1998). Risk assessment of the herbicide Clomazone to aquatic life. Verhandlungen - Internationale Vereinigung Fuer Theoretische Und Angewandte Limnologie, 26, 1724–1726. https://doi.org/10.1080/03680770.1995.11901028

    Article  CAS  Google Scholar 

  • Josse, J., & Husson, F. (2012). Handling missing values in exploratory multivariate data analysis methods. J Soc Fr Stat, 153, 79–99.

    Google Scholar 

  • Josse, J., & Husson, F. (2016). missMDA: a package for handling missing values in multivariate data analysis. J Stat Softw, 70, 1–31. https://doi.org/10.18637/jss.v070.i01

    Article  Google Scholar 

  • Lemos, C. T., Iranço, F. A., Oliveira, N. C. D., Souza, G. D., & Fachel, J. M. G. (2008). Biomonitoring of genotoxicity using micronuclei assay in native population of Astyanax jacuhiensis (Characiformes: Characidae) at sites under petrochemical influence. Science of the Total Environment, 406, 337–343. https://doi.org/10.1016/j.scitotenv.2008.07.006

    Article  CAS  Google Scholar 

  • Leps, J., & Smilauer, P. (2003). Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press. https://doi.org/10.1017/CBO9780511615146

    Book  Google Scholar 

  • Lewis, K. A., Tzilivakis, J., Warner, D., & Green, A. (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment, 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242

    Article  CAS  Google Scholar 

  • Liu, S. Y., Shocken, M., & Rosazza, J. P. N. (1996). Microbial transformations of Clomazone. Journal of Agriculture and Food Chemistry, 44, 313–319. https://doi.org/10.1021/jf9502663

    Article  CAS  Google Scholar 

  • López, S. L., Aiassa, D., BenÍtez-Leite, S., Lajmanovich, R., Mañas, F., Poletta, G., Sánchez, N., Simoniello, M. F., & Carrasco, A. E. (2012). Pesticides Used in South American GMO-Based Agriculture: A Review of Their Effects on Humans and Animal Models. Adv Mol Toxicol, 6, 41–75. https://doi.org/10.1016/B978-0-444-59389-4.00002-1

    Article  CAS  Google Scholar 

  • Loro, V. L., Murussi, C., Menezes, C., Leitemperger, J., Severo, E., Guerra, L., Costa, M., Perazzo, G. X., & Zanella, R. (2015). Spatial and temporal biomarkers responses of Astyanax jacuhiensis (Cope, 1894) (Characiformes: Characidae) from the middle Rio Uruguai, Brazil. Neotrop Ichthyol, 13, 569–578. https://doi.org/10.1590/1982-0224-20140146

    Article  Google Scholar 

  • Lushchak, V. I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology, 101, 13–30. https://doi.org/10.1016/j.aquatox.2010.10.006

    Article  CAS  Google Scholar 

  • Lushchak, V. I., & Bagnyukova, T. V. (2006). Effects of different environmental oxygen levels on free radical processes in fish. Comparative Biochemistry and Physiology, 144, 283–289. https://doi.org/10.1016/j.cbpb.2006.02.014

    Article  CAS  Google Scholar 

  • Marcon, L., Thomé, R. G., Mounteer, A. H., Bazzoli, N., Rizzo, E., & Benjamin, L. A. (2017). Immunohistochemical, morphological and histometrical analyses of follicular development in Astyanax bimaculatus (Teleostei: Characidae) exposed to an organochlorine insecticide. Ecotoxicology and Environmental Safety, 143, 249–258. https://doi.org/10.1016/j.ecoenv.2017.05.029

    Article  CAS  Google Scholar 

  • Marins, A. T., Severo, E. S., Leitemperger, J. W., Cerezer, C., Muller, T. E., Costa, M. D., Weimer, G. H., Bandeira, M. N. G., Prestes, O. D., Zanella, R., & Loro, V. L. (2020). Assessment of river water quality in an agricultural region of Brazil using biomarkers in a native neotropical fish, Astyanax spp. (Characidae). Bulletin of Environment Contamination and Toxicology, 104, 575–581.

    Article  CAS  Google Scholar 

  • Martins, M. L., Donato, F. F., Prestes, O. D., Adaime, M. B., & Zanella, R. (2013). Determination of pesticide residues and related compounds in water and industrial effluent by solid-phase extraction and gas chromatography coupled to triple quadruple mass spectrometry. Analytical and Bioanalytical Chemistry, 405, 7697–7709. https://doi.org/10.1007/s00216-013-7235-0

    Article  CAS  Google Scholar 

  • Menezes, C., Leitemperger, J., Murussi, C., Toni, C., Araújo, M. C. S., Farias, I. L., Perazzo, G. X., Barbosa, N. V., & Loro, V. L. (2014). Herbicide Clomazone effects on δ-Aminolevulinic acid activity and metabolic parameters in Cyprinus carpio. Bulletin of Environment Contamination and Toxicology, 92, 393–398. https://doi.org/10.1007/s00128-014-1229-2

    Article  CAS  Google Scholar 

  • Ministério do Ambiente. Decreto-Lei n.º 236/1998 de 1 de agosto (1998) Estabelece normas, critérios e objectivos de qualidade com a finalidade de proteger o meio aquático e melhorar a qualidade das águas em. Diário da República, 1ª Série, n.º 176 de 1/8/1998, 3676–3722.

  • Moreira-Filho, O., & Bertollo, L. A. C. (1991). Astyanax scabripinnis (Pisces, Characidae): A species complex. Brazilian Journal of Genetics, 14, 331–357.

    Google Scholar 

  • Mottes, C., Jannoyer, M. L., Le Bail, M., Guéné, M., Carles, C., & Malézieux, E. (2017). Relationships between past and present pesticide applications and pollution at a watershed outlet: The case of a horticultural catchment in Martinique, French West Indies. Chemosphere, 184, 762–773. https://doi.org/10.1016/j.chemosphere.2017.06.061

    Article  CAS  Google Scholar 

  • Munaretto, J. S., Ferronato, G., Ribeiro, L. C., Martins, M. L., Adaime, M. B., & Zanella, R. (2013). Development of a multiresidue method for the determination of endocrine disrupters in fish fillet using gas chromatography-triple quadrupole tandem mass spectrometry. Talanta, 116, 827–834. https://doi.org/10.1016/j.talanta.2013.07.047

    Article  CAS  Google Scholar 

  • Murussi, C. R., Costa, M., Menezes, C., Leitemperger, J., Guerra, L., Lópes, T., Severo, E., Zanella, R., & Loro, V. L. (2015). Integrated assessment of biomarker response in Carp (Cyprinus carpio) and Silver Catfish (Rhamdia quelen) exposed to Clomazone. Archives of Environmental Contamination and Toxicology, 68, 646–654. https://doi.org/10.1007/s00244-015-0145-8

    Article  CAS  Google Scholar 

  • Nauen, D. R., Jeschke, P., & Copping, L. (2008). In Focus: Neonicotinoid insecticides. Pest Management Science, 64, 1081. https://doi.org/10.1002/ps.1659

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M., Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara MRB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) Vegan: Community Ecology Package (Version 2.5–5)

  • Orsi, M. L., Carvalho, E. D., & Foresti, F. (2004). Biologia populacional de Astyanax altiparanae Garutti & Britski (Teleostei, Characidae) do médio Rio Paranapanema, Paraná, Brasil. Revista Brasileria De Zoologia, 21, 207–218.

    Article  Google Scholar 

  • Paulino, M. G., Benze, T. P., Sadauskas-Henrique, H., Sakuragui, M. M., Fernandes, J. B., & Fernandes, M. N. (2014). The impact of organochlorines and metals on wild fish living in a tropical hydroelectric reservoir: Bioaccumulation and histopathological biomarkers. Science of the Total Environment, 497–498, 293–306. https://doi.org/10.1016/j.scitotenv.2014.07.122

    Article  CAS  Google Scholar 

  • Pengue WA (2016) Cultivos transgénicos, ¿Hacia dónde fuimos? Veinte años después: La soja en Argentina 1996–2016. Fundación Heinrich Böll Stiftung, Buenos Aires/Santiago.

  • Pereira, L., Fernandes, M. N., & Martinez, C. B. R. (2013). Hematological and biochemical alterations in the fish Prochilodus lineatus caused by the herbicide clomazone. Environmental Toxicology and Pharmacology, 36, 1–8. https://doi.org/10.1016/j.etap.2013.02.019

    Article  CAS  Google Scholar 

  • Piancini, L. D. S., Guiloski, I. C., Assis, H. C. S., & Cestari, M. M. (2015). Mesotrione herbicide promotes biochemical changes and DNA damage in two fish species. Toxicology Reports, 2, 1157–1163. https://doi.org/10.1016/j.toxrep.2015.08.007

    Article  CAS  Google Scholar 

  • R Code Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Ragnarsdottir, K. V. (2000). Environmental fate and toxicology of organophosphate pesticides. Journal of the Geological Society, 157, 859–876. https://doi.org/10.1144/jgs.157.4.859

    Article  CAS  Google Scholar 

  • Rio Grande do Sul. Secretaria da Coordenação e Planejamento (2002) Atlas Socioeconômico: Estado do Rio Grande do Sul/ Rio Grande do Sul. Porto Alegre: SCP, 2. ed.

  • Rossi, S. C., Silva, M. D., Piancini, L. D. S., Ribeiro, C. A. O., Cestari, M. M., & Assis, H. C. S. (2011). Sublethal effects of waterborne herbicides in tropical freshwater fish. Bulletin of Environment Contamination and Toxicology, 87, 603–607. https://doi.org/10.1007/s00128-011-0397-6

    Article  CAS  Google Scholar 

  • Sabin, G. P., Prestes, O. D., Adaime, M. B., & Zanella, R. (2009). Multiresidue determination of pesticides in drinking water by gas chromatography-mass spectrometry after solid-phase extraction. Journal of the Brazilian Chemical Society, 20, 918–925. https://doi.org/10.1590/S0103-50532009000500017

    Article  CAS  Google Scholar 

  • Santana, C. A., Andrade, L. H. C., Súarez, Y. R., Yukimitu, K., Moraes, J. C. S., & Lima, S. M. (2015). Fourier transform-infrared photoacoustic spectroscopy applied in fish scales to access environmental integrity: A case study of Astyanax altiparanae species. Infrared Physics & Technology, 72, 84–89. https://doi.org/10.1016/j.infrared.2015.07.005

    Article  CAS  Google Scholar 

  • Santos, T. G., & Martinez, C. B. R. (2012). Atrazine promotes biochemical changes and DNA damage in a Neotropical fish species. Chemosphere, 89, 1118–1125. https://doi.org/10.1016/j.chemosphere.2012.05.096

    Article  CAS  Google Scholar 

  • Schmidel, A. J., Assmann, K. L., Werlang, C. C., Bertoncello, K. T., Francescon, F., Rambo, C. L., Beltrame, G. M., Calegari, D., Batista, C. B., Blaser, R. E., Júnior, W. A. R., Conterato, G. M. M., Piato, A. L., Zanatta, L., Magro, J., & Rosemberg, D. (2014). Subchronic atrazine exposure changes defensive behaviour profile and disrupts brain acetylcholinesterase activity of zebra fish. Neurotoxicology and Teratology, 44, 62–69. https://doi.org/10.1016/j.ntt.2014.05.006

    Article  CAS  Google Scholar 

  • Secretaria Estadual do Meio Ambiente – SEMA/RS (2012) Processo de Planejamento dos Usos da Água na Bacia Hidrográfica do Rio Ijuí: Enquadramento. Relatório final

  • Silva, A. G., & Martinez, C. B. R. (2007). Morphological changes in the kidney of a fish living in an urban stream. Environmental Toxicology and Pharmacology, 23, 185–192. https://doi.org/10.1016/j.etap.2006.08.009

    Article  CAS  Google Scholar 

  • Soares, M. P., Jesus, F., Almeida, A. R., Domingues, I., Hayd, L., & Soares, A. M. V. M. (2020). Effects of pH and nitrites on the toxicity of a cypermetrin-based pesticide to shrimps. Chemosphere, 241, 125089. https://doi.org/10.1016/j.chemosphere.2019.125089

    Article  CAS  Google Scholar 

  • Soil Survey Staff. (2014). Keys to Soil Taxonomy; Government Printing Office: Washington. DC.

    Google Scholar 

  • Solomon, K. R., Baker, D. B., Richards, R. P., Dixon, K. R., Klaine, T. J., Point, T. W., Kendall, R. J., Weisskopf, C. P., Giddings, J. M., Giesy, J. P., Hall, L. W., & Williams, W. M. (1996). Ecological risk assessment of atrazine in North American surface waters. Environmental Toxicology and Chemistry, 15, 31–76. https://doi.org/10.1002/etc.5620150105

    Article  CAS  Google Scholar 

  • Solomon, K. R., Carr, J. A., Du Preez, L. H., Giesy, J. P., Kendall, R. J., Smith, E. E., & Van Der Kraak, G. J. (2008). Effects of Atrazine on Fish, Amphibians, and Aquatic Reptiles: A Critical Review. Critical Reviews in Toxicology, 38, 721–772. https://doi.org/10.1080/10408440802116496

    Article  Google Scholar 

  • Tiecher, T., Schenato, R. B., Santanna, M. A., Caner, L., & Santos, D. R. (2017). Phosphorus forms in sediments as indicators of anthropic pressures in an agricultural catchment in Southern Brazil. Rev Bras Cienc Solo, 41, 1–17. https://doi.org/10.1590/18069657rbcs20160569

    Article  CAS  Google Scholar 

  • Tiecher, T., Ramon, R., Laceby, J. P., Evrard, O., & Minella, J. P. G. (2019). Potential of phosphorus fractions to trace sediment sources in a rural catchment of Southern Brazil: Comparison with the conventional approach based on elemental geochemistry. Geoderma, 337, 1067–1076. https://doi.org/10.1016/j.geoderma.2018.11.011

    Article  CAS  Google Scholar 

  • Tišler, T., Jemec, A., Mozetic, B., & Trebse, P. (2009). Hazard identification of imidacloprid to aquatic environment. Chemosphere, 76, 907–914. https://doi.org/10.1016/j.chemosphere.2009.05.002

    Article  CAS  Google Scholar 

  • Topal, A., Alak, G., Ozkaraca, M., Yeltekin, A. C., Comakli, S., Acil, G., Kokturk, M., & Atamanalp, M. (2017). Neurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: Assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activity. Chemosphere, 175, 186–191. https://doi.org/10.1016/j.chemosphere.2017.02.047

    Article  CAS  Google Scholar 

  • Verdouw, H., Van Echteld, C. J. A., & Dekkers, E. M. J. (1978). Ammonia determinations based on indophenol formation with sodium salicylate. Water Research, 12, 399–402.

    Article  CAS  Google Scholar 

  • Vieira, C. E. D., Almeida, M. S., Galindo, B. A., Pereira, L., & Martinez, C. B. R. (2014). Integrated biomarker response index using a Neotropical fish to assess the water quality in agricultural areas. Neotrop Ichthyol, 12, 153–164. https://doi.org/10.1590/S1679-62252014000100017

    Article  Google Scholar 

  • Vieira, C. E. D., Costa, P. G., Cabrera, L. C., Primel, E. G., Fillmann, G., Bianchini, A., & Martinez, C. B. R. (2017). A comparative approach using biomarkers in feral and caged Neotropical fish: Implications for biomonitoring freshwater ecosystems in agricultural areas. Science of the Total Environment, 586, 598–609. https://doi.org/10.1016/j.scitotenv.2017.02.026

    Article  CAS  Google Scholar 

  • Vieira, C. E. D., Pérez, M. R., Acayaba, R. D., Raimundo, C. C. M., & Martinez, C. B. R. (2018). DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere, 195, 125–134. https://doi.org/10.1016/j.chemosphere.2017.12.077

    Article  CAS  Google Scholar 

  • Watson, S. J., & Maly, E. J. (1987). Thiocyanate toxicity to Daphnia magna: Modified by pH and temperature. Aquatic Toxicology, 10, 1–8. https://doi.org/10.1016/0166-445x(87)90023-3

    Article  CAS  Google Scholar 

  • Yan, L. J., Traber, M. G., & Packer, L. (1995). Spectrophotometric method for determination of carbonyls in oxidatively modified apolipoprotein B of human low-density lipoproteins. Analytical Biochemistry, 228, 349–351.

    Article  CAS  Google Scholar 

  • Zanella, R., Primel, E. G., Machado, S. L. O., Gonçalves, F. F., & Marchezan, E. (2002). Monitoring of the herbicide clomazone in environmental water samples by solid-phase extraction and high-performance liquid chromatographywith ultraviolet detection. Chromatographia, 55, 573–577. https://doi.org/10.1007/BF02492903

    Article  CAS  Google Scholar 

  • Zebral, Y. D., Roza, M., Fonseca, J. S., Costa, P. G., de Oliveira, C. S., Zocke, T. G., Dal Pizzol, J. L., Robaldo, R. B., & Bianchini, A. (2019). Waterborne copper is more toxic to the killifish Poecilia vivipara in elevated temperatures: Linking oxidative stress in the liver with reduced organismal thermal performance. Aquatic Toxicology, 209, 142–149. https://doi.org/10.1016/j.aquatox.2019.02.005

    Article  CAS  Google Scholar 

  • Zhou, J., Wang, W. N., Wang, A. L., He, W. Y., Zhou, Q. T., Liu, Y., & Xu, J. (2009). Glutathione S-transferase in the white shrimp Litopenaeus vannamei: Characterization and regulation under pH stress. Comp Biochem Physiol - Part c: Toxicol Pharmacol, 150, 224–230. https://doi.org/10.1016/j.cbpc.2009.04.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Vilmar Souza for his assistance in collecting the fish, the Kroth Thomé da Cruz family for their support, and the Leal family for their collaboration.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) [Finance Code 001].

Author information

Authors and Affiliations

Authors

Contributions

Tamiris Rosso Storck: Study design, experimental execution (fish, water and sediment collection), water quality and biochemical analyses, data analyses and interpretation, and manuscript writing. Aline Monique Blank do Amaral: experimental execution, biochemical analyses, revision and writing of the manuscript. Taisson Kroth Thomé da Cruz: experimental execution and biochemical analyses. Dionatan de Pellegrin: Water quality and biochemical analyses. Jaíne Ames: Biochemical analyses. Felipe Osmari Cerezer: Statistical analysis and interpretation, and manuscript writing. Renato Zanella and Osmar Damian Prestes: Pesticides determination in fish muscle, water and sediments samples. Vania Lucia Loro: Financial support and manuscript revision. Barbara Clasen: Study conceptualization, financial support, data analyses and interpretation, and manuscript revision.

Corresponding author

Correspondence to Barbara Clasen.

Ethics declarations

Ethical Approval

The study was approved by Chico Mendes Biodiversity Conservation Institute (ICMBio), under license number 66994–1.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 81 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Storck, T.R., do Amaral, A.M.B., da Cruz, T.K.T. et al. Biomarkers’ Responses in Neotropical Freshwater Fish Living in Southern Brazil: Agricultural Activity or Seasonal Interference?. Water Air Soil Pollut 233, 476 (2022). https://doi.org/10.1007/s11270-022-05956-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05956-4

Keywords

Navigation