Skip to main content

Advertisement

Log in

Multivariate and Statistical Evaluation of Coastal Water Quality and Seasonal Variation in the Physicochemical Properties of Gulf of Khambhat Region, Gujarat, India

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Coastal basins are the world’s largest ultimate natural system for productivity and more than 40% of the world’s population prefers to live on the coastline. Thus, the coastal region is of great economic and nutritional importance. The current research study investigates the seasonal deviations in coastal water quality at four different locations along the Gulf of Khambhat, Gujarat, India, for three consecutive seasons (pre-monsoon, monsoon, and post-monsoon). The coastal water samples were collected and analyzed for the water quality in the prescribed study area. As a result, sea surface temperature, salinity, pH, EC, alkalinity, turbidity, salinity, total suspended particles, dissolved oxygen, biological oxygen demand, chemical oxygen demand, chloride, sulfate, and nutrients such as nitrate, nitrite, phosphate, and total organic carbon were investigated at Gulf of Khambhat Region. The samples were collected from four different locations (Ghogha, Dumas, Dahej, and Purna). The multivariate statistical analysis indicates that oxygen, dissolved solids, salinity, nutrients, the natural, and anthropogenic conditions are the major factor that affects water quality. The water quality index was calculated to evaluate the seasonal water quality of GoK. The results revealed that the quality of water was moderate in pre-monsoon, monsoon, and post-monsoon. The findings suggest that anthropogenic disturbances and the development of a variety of activities with increased point and non-point stormwater runoff are pumped directly into the coastal areas which damaged water quality. Therefore, the outcomes of physicochemical research of water quality indicators may be a useful tool for government leaders trying to ensure GoK’s long-term sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Ajithamol, A., Michael Babu, M., Venkadesh, B., Saraswathi, S., & Praba, T. (2016). Assessment of hydrobiological parameters in Manakudy estuary, South West Coast of India. International Research Journal of Biological Sciences, 5(3), 46–50.

    Google Scholar 

  • Akhtar, N., Ishak, M. I., Ahmad, M. I., Umar, K., Md Yusuff, M. S., Anees, M. T., et al. (2021). Modification of the water quality index (WQI) process for simple calculation using the multi-criteria decision-making (MCDM) method: A review. Water. https://doi.org/10.3390/w13070905

    Article  Google Scholar 

  • Al-Mutairi, N., AbaHussain, A., & El-Battay, A. (2015). Spatial assessment of monitoring network in coastal waters: A case study of Kuwait Bay. Environmental Monitoring and Assessment, 187(10), 621. https://doi.org/10.1007/s10661-015-4841-7

    Article  Google Scholar 

  • Aniyikaiye, T. E., Oluseyi, T., Odiyo, J. O., & Edokpayi, J. N. (2019). Physico-chemical analysis of wastewater discharge from selected paint industries in Lagos, Nigeria. International Journal of Environmental Research and Public Health . https://doi.org/10.3390/ijerph16071235

  • APHA. (1998). Standard Methods for the Examination of Water and Wastewater (20th ed.). American Public Health Association.

    Google Scholar 

  • Arnott, R. N., Cherif, M., Bryant, L. D., & Wain, D. J. (2021). Artificially generated turbulence: A review of phycological nanocosm, microcosm, and mesocosm experiments. Hydrobiologia, 848(5), 961–991. https://doi.org/10.1007/s10750-020-04487-5

    Article  Google Scholar 

  • Balakrishnan, S., Chelladurai, G., Mohanraj, J., & Poongodi, J. (2017). Seasonal variations in physico-chemical characteristics of Tuticorin coastal waters, southeast coast of India. Applied Water Science, 7(4), 1881–1886. https://doi.org/10.1007/s13201-015-0363-2

    Article  CAS  Google Scholar 

  • Bhadja, P., & Kundu, R. (2011). Status of the seawater quality at few industrially important coasts of Gujarat (India) off Arabian Sea. Indian Journal of Geo-Marine Sciences, 41(1), 90–97.

    Google Scholar 

  • Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: A review. Sustainable Water Resources Management, 2(2), 161–173. https://doi.org/10.1007/s40899-015-0014-7

    Article  Google Scholar 

  • Bozorg-Haddad, O., Delpasand, M., & Loáiciga, H. A. (2021). Water quality, hygiene, and health. In O. B. T.-E. Bozorg-Haddad Political, and Social Issues in Water Resources (Ed.), Economical, political, and social issues in water resources (pp. 217–257). Elsevier. https://doi.org/10.1016/B978-0-323-90567-1.00008-5

  • Bristy, M. S., Sarker, K. K., Baki, M. A., Quraishi, S. B., Hossain, M. M., Islam, A., & Khan, M. F. (2021). Health risk estimation of metals bioaccumulated in commercial fish from coastal areas and rivers in Bangladesh. Environmental Toxicology and Pharmacology, 86, 103666. https://doi.org/10.1016/j.etap.2021.103666

    Article  CAS  Google Scholar 

  • Bunce, J. T., Ndam, E., Ofiteru, I. D., Moore, A., & Graham, D. W. (2018). A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Frontiers in Environmental Science . https://www.frontiersin.org/article/10.3389/fenvs.2018.00008

  • Cao, C., Cai, F., Qi, H., Zhao, S., & Wu, C. (2021). Differences in the sulfate–methane transitional zone in coastal pockmarks in various sedimentary environments. Water https://doi.org/10.3390/w13010068

  • Chen, C.-T.A., Huang, T.-H., Wu, C.-H., Yang, H., & Guo, X. (2021). Variability of the nutrient stream near Kuroshio’s origin. Scientific Reports, 11(1), 5080. https://doi.org/10.1038/s41598-021-84420-5

    Article  CAS  Google Scholar 

  • Chen, G., Azkab, M. H., Chmura, G. L., Chen, S., Sastrosuwondo, P., Ma, Z., et al. (2017). Mangroves as a major source of soil carbon storage in adjacent seagrass meadows. Scientific Reports, 7(1), 42406. https://doi.org/10.1038/srep42406

    Article  CAS  Google Scholar 

  • Chen, J., Wang, Y., Li, F., & Liu, Z. (2019). Aquatic ecosystem health assessment of a typical sub-basin of the Liao River based on entropy weights and a fuzzy comprehensive evaluation method. Scientific Reports, 9(1), 14045. https://doi.org/10.1038/s41598-019-50499-0

    Article  CAS  Google Scholar 

  • Chu, E. W., & Karr, J. R. (2017). Environmental impact: Concept, consequences, measurement. Reference Module in Life Sciences, B978–0–12–809633–8.02380–3.https://doi.org/10.1016/B978-0-12-809633-8.02380-3

  • Clifford, H. M., Potocki, M., Koch, I., Sherpa, T., Handley, M., Korotkikh, E., et al. (2021). A case study using 2019 pre-monsoon snow and stream chemistry in the Khumbu region Nepal. Science of the Total Environment, 789, 148006. https://doi.org/10.1016/j.scitotenv.2021.148006

    Article  CAS  Google Scholar 

  • Comfort, C. M., Walker, G. O., McManus, M. A., Fujimura, A. G., Ostrander, C. E., & Donaldson, T. J. (2019). Physical dynamics of the reef flat, channel, and fore reef areas of a fringing reef embayment: An oceanographic study of Pago Bay Guam. Regional Studies in Marine Science, 31, 100740. https://doi.org/10.1016/j.rsma.2019.100740

    Article  Google Scholar 

  • Cronin, M. F., Gentemann, C. L., Edson, J. B., Ueki, I., Bourassa, M., Brown, S., et al. (2019). Air-sea fluxes with a focus on heat and momentum. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2019.00430

    Article  Google Scholar 

  • Davies, O. A., & Ugwumba, O. A. (2013). Tidal influence on nutrients status and phytoplankton population of Okpoka Creek, Upper Bonny Estuary Nigeria. Journal of Marine Biology, 2013, 684739. https://doi.org/10.1155/2013/684739

    Article  CAS  Google Scholar 

  • Dey, S., Botta, S., Kallam, R., Angadala, R., & Andugala, J. (2021). Seasonal variation in water quality parameters of Gudlavalleru Engineering College pond. Current Research in Green and Sustainable Chemistry, 4, 100058. https://doi.org/10.1016/j.crgsc.2021.100058

    Article  CAS  Google Scholar 

  • Drira, Z., Sahnoun, H., & Ayadi, H. (2017). Spatial distribution and source identification of heavy metals in surface waters of three coastal areas of Tunisia. Polish Journal of Environmental Studies, 26(3), 1057–1069. https://doi.org/10.15244/pjoes/67529

    Article  CAS  Google Scholar 

  • Dubey, M., & Ujjania, N. (2013). Water quality and pollution status of Tapi River Gujarat India. international journal of pure and applied zoology, 1, 2320–9577.

    Google Scholar 

  • El Baba, M., Kayastha, P., Huysmans, M., & De Smedt, F. (2020). Evaluation of the groundwater quality using the water quality index and geostatistical analysis in the Dier al-Balah Governorate, Gaza Strip, Palestine. Water . https://doi.org/10.3390/w12010262

  • El Kateb, A., Stalder, C., Rüggeberg, A., Neururer, C., Spangenberg, J. E., & Spezzaferri, S. (2018). Impact of industrial phosphate waste discharge on the marine environment in the Gulf of Gabes (Tunisia). PLoS One, 13(5), e0197731. https://doi.org/10.1371/journal.pone.0197731

    Article  CAS  Google Scholar 

  • Geng, X., Boufadel, M. C., & Jackson, N. L. (2016). Evidence of salt accumulation in beach intertidal zone due to evaporation. Scientific Reports, 6, 31486. https://doi.org/10.1038/srep31486

    Article  CAS  Google Scholar 

  • George, B., Nirmal Kumar, J. I., & Kumar, R. N. (2012). Study on the influence of hydro-chemical parameters on phytoplankton distribution along Tapi estuarine area of Gulf of Khambhat, India. The Egyptian Journal of Aquatic Research, 38(3), 157–170. https://doi.org/10.1016/j.ejar.2012.12.010

    Article  Google Scholar 

  • Gopal, N., Devi, Karthikeyan, & K., Lekameera, R., Mehta, P., & Thivakaran, A. (2014). Water and sediment quality characteristics near an industrial vicinity Vadinar, Gulf of Kachchh, Gujarat, India. international journal of plant, animal and environmental science, 4, 219–226.

    Google Scholar 

  • Gorgoglione, A., Gioia, A., & Iacobellis, V. (2019). A framework for assessing modeling performance and effects of rainfall-catchment-drainage characteristics on nutrient urban runoff in poorly gauged watersheds. Sustainability. https://doi.org/10.3390/su11184933

  • Grobbelaar, J. U. (2009). Turbidity. In G. E. B. T.-E. of I. W. Likens (Ed.), Encyclopedia of inland waters (pp. 699–704). Oxford: Academic Press. https://doi.org/10.1016/B978-012370626-3.00075-2

  • Grzywna, A., & Bronowicka-Mielniczuk, U. (2020). Spatial and temporal variability of water quality in the Bystrzyca River Basin, Poland. Water. https://doi.org/10.3390/w12010190

  • Gupta, A. K., Gupta, S. K., & Patil, R. S. (2005). Statistical analyses of coastal water quality for a port and harbour region in India. Environmental Monitoring and Assessment, 102(1), 179–200. https://doi.org/10.1007/s10661-005-6021-7

    Article  CAS  Google Scholar 

  • Hamid, A., Bhat, S. U., & Jehangir, A. (2019). Local determinants influencing stream water quality. Applied Water Science, 10(1), 24. https://doi.org/10.1007/s13201-019-1043-4

    Article  Google Scholar 

  • Hammer, K. J., Kragh, T., & Sand-Jensen, K. (2019). Inorganic carbon promotes photosynthesis, growth, and maximum biomass of phytoplankton in eutrophic water bodies. Freshwater Biology, 64(11), 1956–1970. https://doi.org/10.1111/fwb.13385

    Article  CAS  Google Scholar 

  • Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardón, M., et al. (2015). A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere, 6(10), 206. https://doi.org/10.1890/ES14-00534.1

    Article  Google Scholar 

  • Howladar, M. F., Deb, P. K., Muzemder, A. T. M. S. H., & Ahmed, M. (2014). Evaluation of water resources around Barapukuria coal mine industrial area, Dinajpur Bangladesh. Applied Water Science, 4(3), 203–222. https://doi.org/10.1007/s13201-014-0207-5

    Article  CAS  Google Scholar 

  • Jargal, N., Atique, U., Mamun, M., & An, K.-G. (2021). Seasonal and long-term connections between trophic status, sestonic chlorophyll, nutrients, organic matter, and monsoon rainfall in a multipurpose reservoir. Water . https://doi.org/10.3390/w13131720

  • J.I., N., P.R., S., N Kumar, R., George, B., & Khan, S. (2013). Statistical evaluation of water quality parameters of two different seasons in Mahi Estuary, West coast of India. Ekologia Bratislava, 32(1). https://doi.org/10.2478/eko-2013-0011

  • Jha, D. K., Devi, M. P., Vidyalakshmi, R., Brindha, B., Vinithkumar, N. V., & Kirubagaran, R. (2015). Water quality assessment using water quality index and geographical information system methods in the coastal waters of Andaman Sea India. Marine Pollution Bulletin, 100(1), 555–561. https://doi.org/10.1016/j.marpolbul.2015.08.032

    Article  CAS  Google Scholar 

  • Kida, M., & Fujitake, N. (2020). Organic carbon stabilization mechanisms in mangrove soils: A review. Forests . https://doi.org/10.3390/f11090981

  • Kumar, P., & Fulekar, M. H. (2019). Multivariate and statistical approaches for the evaluation of heavy metals pollution at e-waste dumping sites. SN Applied Sciences, 1(11), 1506. https://doi.org/10.1007/s42452-019-1559-0

    Article  CAS  Google Scholar 

  • Kumar, N., J.I., N., N Kumar, R., & Viyol, S. (2010). Dissolved methane fluctuations in relation to hydro-chemical parameters in Tapi Estuary, Gulf of Cambay, India. International Journal of Environmental Research, 4, 893–900.

  • Kumar S, S., & Ramakrishnan, B. (2015). Tidal hydrodynamics along Gulf of Khambhat, West Coast of India. In Aquatic Procedia (Vol. 4).https://doi.org/10.1016/j.aqpro.2015.02.007

  • Kumar, P., Kumar, R., & Reddy, M. V. (2017). Assessment of sewage treatment plant effluent and its impact on the surface water and sediment quality of river Ganga at Kanpur. International Journal of Scientific & Engineering Research, 8(1), 1315–1324. https://doi.org/10.14299/ijser.2018.01.003

    Article  Google Scholar 

  • Kumar, R., Kumar, R., Singh, S., Singh, A., Bhardwaj, A., & Chaudhary, H. (2019a). Hydro-geochemical characteristics of glacial meltwater from Naradu Glacier catchment Western Himalaya. Environmental Earth Sciences, 78(24), 683. https://doi.org/10.1007/s12665-019-8687-0

    Article  CAS  Google Scholar 

  • Kumar, R., Kumar, R., Singh, A., Singh, S., Bhardwaj, A., Kumari, A., et al. (2019b). Hydro-geochemical analysis of meltwater draining from Bilare Banga glacier Western Himalaya. Acta Geophysica, 67(2), 651–660. https://doi.org/10.1007/s11600-019-00262-w

    Article  Google Scholar 

  • Kumar, P., Fulekar, M. H., Hiranmai, R. Y., Kumar, R., & Kumar, R. (2020). 16S rRNA molecular profiling of heavy metal tolerant bacterial communities isolated from soil contaminated by electronic waste. Folia Microbiologica. https://doi.org/10.1007/s12223-020-00808-2

    Article  Google Scholar 

  • Kuttimani, R., Raviraj, A., Pandian, B. J., & Kar, G. (2017). Chemical science review and letters determination of water quality index in coastal area (Nagapattinam) of Tamil Nadu India. Chemical Science Review and Letters, 6(24), 2208–2221.

    CAS  Google Scholar 

  • Landrigan, P. J., Stegeman, J. J., Fleming, L. E., Allemand, D., Anderson, D. M., Backer, L. C., et al. (2020). Human health and ocean pollution. Annals of Global Health, 86(1), 151. https://doi.org/10.5334/aogh.2831

    Article  Google Scholar 

  • Lomas, M. W., Bonachela, J. A., Levin, S. A., & Martiny, A. C. (2014). Impact of ocean phytoplankton diversity on phosphate uptake. Proceedings of the National Academy of Sciences of the United States of America, 111(49), 17540–17545. https://doi.org/10.1073/pnas.1420760111

    Article  CAS  Google Scholar 

  • Maliki, A. A. A., Chabuk, A., Sultan, M. A., Hashim, B. M., Hussain, H. M., & Al-Ansari, N. (2020). Estimation of total dissolved solids in water bodies by spectral indices case study: Shatt al-Arab River. Water, Air, & Soil Pollution, 231(9), 482. https://doi.org/10.1007/s11270-020-04844-z

    Article  CAS  Google Scholar 

  • Martin, G. D., Vijay, J. G., C M, L., Madhu, N. V, Joseph, T., Nair, M., et al. (2008). Fresh water influence on nutrient stoichiometry in a tropical estuary, Southwest coast of India. Applied Ecology and Environmental Research, 6(1).

  • Martiny, A. C., Lomas, M. W., Fu, W., Boyd, P. W., Chen, Y. ling L., Cutter, G. A., et al. (2019). Biogeochemical controls of surface ocean phosphate. Science Advances, 5(8), 1–10. https://doi.org/10.1126/sciadv.aax0341

  • Mayalagu, R., Perumal, P., Prabu, V. A., Vengadesh perumal, N., & Rajasekar, K. (2009). Phytoplankton diversity in Pichavaram mangrove waters from south-east coast of India. Journal of environmental biology / Academy of Environmental Biology, India, 30, 489–498.

  • Misra, A., & Balaji, R. (2015). Decadal changes in the land use/land cover and shoreline along the coastal districts of southern Gujarat India. Environmental Monitoring and Assessment, 187(7), 461. https://doi.org/10.1007/s10661-015-4684-2

    Article  CAS  Google Scholar 

  • Miyittah, M. K., Tulashie, S. K., Tsyawo, F. W., Sarfo, J. K., & Darko, A. A. (2020). Assessment of surface water quality status of the Aby Lagoon System in the Western Region of Ghana. Heliyon, 6(7), e04466. https://doi.org/10.1016/j.heliyon.2020.e04466

    Article  Google Scholar 

  • Mohammed, A. A., Almaliki, D. F., Qasim, R. M., & Najemalden, M. A. (2020). Multivariate statistical application for the assessment of surface water quality in lower zab river, Kirkuk. WSEAS Transactions on Environment and Development, 16, 480–492. https://doi.org/10.37394/232015.2020.16.49

    Article  CAS  Google Scholar 

  • Moore, W. S., & Joye, S. B. (2021). Saltwater intrusion and submarine groundwater discharge: Acceleration of biogeochemical reactions in changing coastal aquifers. Frontiers in Earth Science. https://www.frontiersin.org/article/10.3389/feart.2021.600710

  • Nievola, C. C., Carvalho, C. P., Carvalho, V., & Rodrigues, E. (2017). Rapid responses of plants to temperature changes. Temperature Austin Tex, 4(4), 371–405.

    Article  Google Scholar 

  • Norton, J. M., & Stark, J. M. (2011). Chapter Fifteen - Regulation and measurement of nitrification in terrestrial systems. In M. G. B. T.-M. in E. Klotz (Ed.), Research on nitrification and related processes, Part A (Vol. 486, pp. 343–368). Academic Press. https://doi.org/10.1016/B978-0-12-381294-0.00015-8

  • Palanivel, P. S., Veeraiyan, B., Palingam, G., & Perumal, M. (2019). Influence of physico-chemical parameters and pCO2 concentration on mangroves-associated polychaetes at Pichavaram, southeast coast of India. SN Applied Sciences, 1(12), 1550. https://doi.org/10.1007/s42452-019-1581-2

    Article  CAS  Google Scholar 

  • Panseriya, H. Z., Gosai, H. B., Vala, A. K., Gavali, D. J., & Dave, B. P. (2021). Assessment of surface water of Gulf of Kachchh, west coast of India: A chemometric approach. Marine Pollution Bulletin, 170, 112589. https://doi.org/10.1016/j.marpolbul.2021.112589

    Article  CAS  Google Scholar 

  • Parekh, H., & Gadhvi, I. (2015). Seasonal variation in physico-chemical parameter of seawater at Mithivirdi Coast Bhavnagar -west coast of India. International Journal of Research in Engineering and Bioscience, 3(1), 41–47.

    Google Scholar 

  • Panseriya, H. Z., Gosai, H. B., Sachaniya, B. K., Vala, A. K., & Dave, B. P. (2019). Marine microbial mettle for heavy metal bioremediation: A perception. In Marine pollution: Current status, impacts and remedies Publisher: Bentham Science Publishers (pp. 409–434)https://doi.org/10.2174/9789811412691119010021

  • Pederson, C. L., Ge, Y., Lokier, S. W., Swart, P. K., Vonhof, H., Strauss, H., et al. (2021). Seawater chemistry of a modern subtropical ‘epeiric’ sea: Spatial variability and effects of organic decomposition. Geochimica Et Cosmochimica Acta, 314, 159–177. https://doi.org/10.1016/j.gca.2021.09.024

    Article  CAS  Google Scholar 

  • Pramanik, A. K., Majumdar, D., & Chatterjee, A. (2020). Factors affecting lean, wet-season water quality of Tilaiya reservoir in Koderma District, India during 2013–2017. Water Science, 34(1), 85–97. https://doi.org/10.1080/11104929.2020.1765451

    Article  Google Scholar 

  • Rahman, A., Jahanara, I., & Jolly, Y. N. (2021). Assessment of physicochemical properties of water and their seasonal variation in an urban river in Bangladesh. Water Science and Engineering, 14(2), 139–148. https://doi.org/10.1016/j.wse.2021.06.006

    Article  Google Scholar 

  • Rahman, F., Rahman, M., Rahman, M., Rahaman, M., & Ahmad, J. U. (2013). Water quality of the world’s largest mangrove forest. Canadian Chemical Transactions, 1(2), 141–156. https://doi.org/10.13179/canchemtrans.2013.01.02.0018

    Article  CAS  Google Scholar 

  • Raknuzzaman, M., Ahmed, M. K., Islam, M. S., Habibullah-Al-Mamun, M., Tokumura, M., Sekine, M., & Masunaga, S. (2016). Trace metal contamination in commercial fish and crustaceans collected from coastal area of Bangladesh and health risk assessment. Environmental Science and Pollution Research, 23(17), 17298–17310. https://doi.org/10.1007/s11356-016-6918-4

    Article  CAS  Google Scholar 

  • Reis, C. R. G., Nardoto, G. B., & Oliveira, R. S. (2017). Global overview on nitrogen dynamics in mangroves and consequences of increasing nitrogen availability for these systems. Plant and Soil, 410(1), 1–19. https://doi.org/10.1007/s11104-016-3123-7

    Article  CAS  Google Scholar 

  • Santos, I. R., Burdige, D. J., Jennerjahn, T. C., Bouillon, S., Cabral, A., Serrano, O., et al. (2021). The renaissance of Odum’s outwelling hypothesis in “Blue Carbon” science. Estuarine, Coastal and Shelf Science, 255, 107361. https://doi.org/10.1016/j.ecss.2021.107361

    Article  Google Scholar 

  • Sanyal, P., Ray, R., Paul, M., Gupta, V. K., Acharya, A., Bakshi, S., et al. (2020). Assessing the dynamics of dissolved organic matter (DOM) in the coastal environments dominated by mangroves, Indian Sundarbans. Frontiers in Earth Science. https://www.frontiersin.org/article/10.3389/feart.2020.00218

  • Sarathy, P. P., Bharathidasan, V., Murugesan, P., Selvaraj, P., & Punniyamoorthy, R. (2022). Seasonal carbonate system vis-a-vis pH and salinity in selected tropical estuaries: Implications on polychaete diversity and composition towards predicting ecological health. Oceanologia. https://doi.org/10.1016/j.oceano.2022.01.001

  • Saravanakumar, A., Mayalagu, R., Serebiah, S., & Thivakaran, A. (2008). Seasonal variations in physico-chemical characteristics of water, sediment and soil texture in arid zone mangroves of Kachchh-Gujarat. Journal of Environmental Biology / Academy of Environmental Biology, India, 29, 725–732.

    CAS  Google Scholar 

  • Sarkar, R., Ghosh, A. R., & Mondal, N. K. (2020). Comparative study on physicochemical status and diversity of macrophytes and zooplanktons of two urban ponds of Chandannagar, WB India. Applied Water Science, 10(2), 63. https://doi.org/10.1007/s13201-020-1146-y

    Article  CAS  Google Scholar 

  • Satheeshkumar, P., & Khan, A. B. (2012). Identification of mangrove water quality by multivariate statistical analysis methods in Pondicherry coast India. Environmental Monitoring and Assessment, 184(6), 3761–3774. https://doi.org/10.1007/s10661-011-2222-4

    Article  CAS  Google Scholar 

  • Satpathy, K. K., Mohanty, A. K., Natesan, U., Prasad, M. V. R., & Sarkar, S. K. (2010). Seasonal variation in physicochemical properties of coastal waters of Kalpakkam, east coast of India with special emphasis on nutrients. Environmental Monitoring and Assessment, 164(1), 153–171. https://doi.org/10.1007/s10661-009-0882-0

    Article  CAS  Google Scholar 

  • Satyanarayana, J., & Krishna, P. V. (2017). Species diversity and distribution of molluscan fauna from estuary and mangroves (coringa wildlife sanctuary) of east godavari estuarine ecosystem, Andhra Pradesh India. International Journal of Advanced Research, 5(1), 2930–2937. https://doi.org/10.21474/IJAR01/3094

    Article  Google Scholar 

  • Schulz, K. G., Hartley, S., & Eyre, B. (2019). Upwelling amplifies ocean acidification on the east Australian shelf: Implications for marine ecosystems. Frontiers in Marine Science. https://www.frontiersin.org/article/10.3389/fmars.2019.00636

  • Sharma, R., Kumar, A., Singh, N., & Sharma, K. (2021). Impact of seasonal variation on water quality of Hindon River: Physicochemical and biological analysis. SN Applied Sciences, 3(1), 28. https://doi.org/10.1007/s42452-020-03986-3

    Article  CAS  Google Scholar 

  • Sherafati, M., & Satpathy, S. (2011). RKKY interaction in graphene from the lattice Green’s function. Physical Review B, 83(16), 165425. https://doi.org/10.1103/PhysRevB.83.165425

    Article  CAS  Google Scholar 

  • Shi, W., Xia, J., & Zhang, X. (2016). Influences of anthropogenic activities and topography on water quality in the highly regulated Huai River basin China. Environmental Science and Pollution Research, 23(21), 21460–21474. https://doi.org/10.1007/s11356-016-7368-8

    Article  CAS  Google Scholar 

  • Shil, S., Singh, U. K., & Mehta, P. (2019). Water quality assessment of a tropical river using water quality index (WQI), multivariate statistical techniques and GIS. Applied Water Science, 9(7), 168. https://doi.org/10.1007/s13201-019-1045-2

    Article  CAS  Google Scholar 

  • Singh, J. K. (2020). Structural characteristics of mangrove forest in different coastal habitats of Gulf of Khambhat arid region of Gujarat, west coast of India. Heliyon, 6(8), e04685. https://doi.org/10.1016/j.heliyon.2020.e04685

    Article  Google Scholar 

  • Singh, J. K., Kumar, P., & Kumar, R. (2020). Ecological risk assessment of heavy metal contamination in mangrove forest sediment of Gulf of Khambhat region, West Coast of India. SN Applied Sciences, 2(12), 2027. https://doi.org/10.1007/s42452-020-03890-w

    Article  CAS  Google Scholar 

  • Srinivasan, K., & Natesan, U. (2013). Spatio-temporal variations in water quality of Muttukadu backwaters, Tamilnadu India. Water Environment Research, 85(7), 587–595. https://doi.org/10.2175/106143012X13560205144812

    Article  CAS  Google Scholar 

  • Sunil Kumar, P. (2018). On the effect of hydrogen sulphide on primary productivity from retting area in Vembanad Lake India. Indian Journal of Geo-Marine Sciences, 47(2), 378–380.

    Google Scholar 

  • Tanjung, R. H. R., Hamuna, B., & Alianto, A. (2019). Assessment of water quality and pollution index in coastal waters of Mimika Indonesia. Journal of Ecological Engineering, 20(2), 87–94. https://doi.org/10.12911/22998993/95266

    Article  Google Scholar 

  • Tjahjono, A., Bambang, A., & Anggoro, S. (2017). Analysis of heavy metal content of Pb in ballast water tank of commercial vessels in port of Tanjung Emas Semarang, Central Java Province. Journal of Ecological Engineering, 18, 7–11. https://doi.org/10.12911/22998993/68298

    Article  Google Scholar 

  • Tornero, V., & Hanke, G. (2016). Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas. Marine Pollution Bulletin, 112(1), 17–38. https://doi.org/10.1016/j.marpolbul.2016.06.091

    Article  CAS  Google Scholar 

  • Uddin, M. G., Nash, S., & Olbert, A. I. (2021). A review of water quality index models and their use for assessing surface water quality. Ecological Indicators, 122, 107218. https://doi.org/10.1016/j.ecolind.2020.107218

    Article  CAS  Google Scholar 

  • Ustaoğlu, F., & Islam, M. S. (2020). Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecological Indicators, 113, 106237. https://doi.org/10.1016/j.ecolind.2020.106237

    Article  CAS  Google Scholar 

  • Wu, M.-L., Wang, Y.-S., Wang, Y.-T., Sun, F.-L., Sun, C.-C., Cheng, H., & Dong, J.-D. (2016). Seasonal and spatial variations of water quality and trophic status in Daya Bay South China Sea. Marine Pollution Bulletin, 112(1), 341–348. https://doi.org/10.1016/j.marpolbul.2016.07.042

    Article  CAS  Google Scholar 

  • Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. International Journal of Environmental Science and Technology, 16(2), 1193–1226. https://doi.org/10.1007/s13762-018-2130-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Central University of Gujarat, Gandhinagar for providing the instrumentation facilities.

Author information

Authors and Affiliations

Authors

Contributions

J. K. S. conceived, designed and performed the experiments. P. K. and S. V. analyzed and interpreted the data, original draft preparation, and revised the manuscript.

Corresponding author

Correspondence to Pankaj Kumar.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J.K., Kumar, P. & Vishwakarma, S. Multivariate and Statistical Evaluation of Coastal Water Quality and Seasonal Variation in the Physicochemical Properties of Gulf of Khambhat Region, Gujarat, India. Water Air Soil Pollut 233, 358 (2022). https://doi.org/10.1007/s11270-022-05799-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05799-z

Keywords

Navigation