Skip to main content

Advertisement

Log in

Factors Impacting Microplastic Biofilm Community and Biological Risks Posed by Microplastics in Drinking Water Sources

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Due to inefficient removal of microplastics by drinking water treatment process, widely distributed microplastics in drinking water sources may pose risks to drinking water safety. To explore the factors influencing the colonization of bacteria on microplastics and biological risks posed by microplastics in drinking water sources, we exposed microplastics with different sizes and polymer types to water from Yangtze River and Jialing River for 21 days under controlled conditions. High-throughput sequencing and qPCR were conducted to qualitatively and quantitatively analyze the bacterial community on microplastics. The results showed that bacteria tended to adhere to the surfaces of microplastics, resulting in higher community richness and diversity and different community structure on microplastics compared with those in incubation water. The number of bacteria on microplastics increased with decreasing particle size. It was the nature of incubation water rather than microplastics determined the bacterial community structure on microplastics. Some potential pathogens were discovered on microplastics, especially Mycobacterium which accounted for a high proportion. Overall, this study provided an insight into microplastic biofilm and the challenges brought by them in drinking water sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data that support the findings of this study have been deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) with the accession number PRJNA715310.

References

  • (SEPA) SEPA (2002) Methods for monitoring and analyzing water and wastewater. 4th edn edn. China Environmental Science Press, Beijing

  • Alimi, O. S., Farner Budarz, J., Hernandez, L. M., & Tufenkji, N. (2018). Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology, 52, 1704–1724.

    Article  CAS  Google Scholar 

  • Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62, 1596–1605.

    Article  CAS  Google Scholar 

  • Arias-Andres, M., Klumper, U., Rojas-Jimenez, K., Grossart, H. P. (2018). Microplastic pollution increases gene exchange in aquatic ecosystems. Environmental Pollution, 237:253–261. 0.1016 /j.envpol.2018.02.058

  • Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environment International, 102, 165–176. https://doi.org/10.1016/j.envint.2017.02.013

    Article  CAS  Google Scholar 

  • Barberán, A., Bates, S. T., Casamayor, E. O., & Fierer, N. (2012). Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 6, 343–351.

    Article  Google Scholar 

  • Bartelme, R. P., Custer, J. M., Dupont, C. L., Espinoza, J. L., Torralba, M., Khalili, B., & Carini, P. (2020). Influence of substrate concentration on the culturability of heterotrophic soil microbes isolated by high-throughput dilution-to-extinction cultivation. Msphere, 5, e00024-e20.

    Article  CAS  Google Scholar 

  • Blom, J. F., Zimmermann, Y. S., Ammann, T., & Pernthaler, J. (2010). Scent of danger: Floc formation by a freshwater bacterium is induced by supernatants from a predator-prey coculture. Applied and Environmental Microbiology, 76, 6156–6163. https://doi.org/10.1128/aem.01455-10

    Article  CAS  Google Scholar 

  • Bochicchio, D., Panizon, E., Monticelli, L., & Rossi, G. (2017). Interaction of hydrophobic polymers with model lipid bilayers. Scientific Reports, 7, 1–9.

    Article  CAS  Google Scholar 

  • Borsodi, A. K., Anda, D., Krett, G., Megyes, M., Németh, K., Dobosy, P., Aszalós, J. M., & Engloner, A. (2020). Comparison of planktonic and reed biofilm bacteria in different riverine water bodies of river Danube. River Research and Applications, 36, 852–861.

    Article  Google Scholar 

  • Botha, L., Gey van Pittius, N. C., & van Helden, P. D. (2013). Mycobacteria and disease in Southern Africa. Transboundary and Emerging Diseases, 60, 147–156. https://doi.org/10.1111/tbed.12159

    Article  Google Scholar 

  • Brambila-Tapia, A. J. L., Armenta-Medina, D., Rivera-Gomez, N., & Perez-Rueda, E. (2014). Main functions and taxonomic distribution of virulence genes in Brucella melitensis 16 M. PLoS ONE, 9, e100349.

    Article  Google Scholar 

  • Caicedo, C., Rosenwinkel, K.-H., Exner, M., Verstraete, W., Suchenwirth, R., Hartemann, P., & Nogueira, R. (2019). Legionella occurrence in municipal and industrial wastewater treatment plants and risks of reclaimed wastewater reuse:Review. Water Research, 149, 21–34.

    Article  CAS  Google Scholar 

  • Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pena, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  Google Scholar 

  • Carbery, M., O’Connor, W., & Thavamani, P. (2018). Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environment International, 115, 400–409. https://doi.org/10.1016/j.envint.2018.03.007

    Article  Google Scholar 

  • Chen, S. F., Zhou, Y. Q., Chen, Y. R., & Gu, J. (2018). Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34, 884–890. https://doi.org/10.1093/bioinformatics/bty560

    Article  CAS  Google Scholar 

  • Craig, L., & Li, J. (2008). Type IV pili: Paradoxes in form and function. Current Opinion in Structural Biology, 18, 267–277.

    Article  CAS  Google Scholar 

  • Curren, E., & Leong, S. C. Y. (2019). Profiles of bacterial assemblages from microplastics of tropical coastal environments. Science of the Total Environment, 655, 313–320. https://doi.org/10.1016/j.scitotenv.2018.11.250

    Article  CAS  Google Scholar 

  • Dalmau-Soler, J., Ballesteros-Cano, R., Boleda, M. R., Paraira, M., Ferrer, N. (2021). Lacorte S microplastics from headwaters to tap water: Occurrence and removal in a drinking water treatment plant in Barcelona Metropolitan area (Catalonia, NE Spain). Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-13220-1

  • de Sa, L. C., Oliveira, M., Ribeiro, F., Rocha, T. L., & Futter, M. N. (2018). Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Science of the Total Environment, 645, 1029–1039. https://doi.org/10.1016/j.scitotenv.2018.07.207

    Article  CAS  Google Scholar 

  • De Souza, M.-J.B., Nair, S., Bharathi, P. L., & Chandramohan, D. (2003). Particle-associated bacterial dynamics in a tropical tidal plain (Zuari estuary, India). Aquatic Microbial Ecology, 33, 29–40.

    Article  Google Scholar 

  • De Tender, C., Schlundt, C., Devriese, L., Mincer, T., Zettler, E., & Amaral-Zettler, L. (2017). A review of microscopy and comparative molecular-based methods to characterize “Plastisphere” communities. Analytical Methods, 9, 2132–2143.

    Article  Google Scholar 

  • Declerck, P. (2010). Biofilms: The environmental playground of Legionella pneumophila. Environmental Microbiology, 12, 557–566.

    Article  CAS  Google Scholar 

  • Dixon, P. (2003). VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14:927–930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x

  • Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., Huttenhower, C., & Langille, M. G. I. (2020). PICRUSt2 for prediction of metagenome functions. Nature Biotechnology, 38, 685–688. https://doi.org/10.1038/s41587-020-0548-6

    Article  CAS  Google Scholar 

  • Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  CAS  Google Scholar 

  • Esteban, J., & García-Coca, M. (2018). Mycobacterium Biofilms. Frontiers in Microbiology, 8, 2651.

    Google Scholar 

  • Falkinham, J. O. III. (2013). Ecology of nontuberculous mycobacteria—where do human infections come from? Seminars in Respiratory and Critical Care Medicine, 34, 95–102. https://doi.org/10.1055/s-0033-1333568

  • Faust, K., & Raes, J. (2012). Microbial interactions: From networks to models. Nature Reviews Microbiology, 10, 538–550.

    Article  CAS  Google Scholar 

  • Frère, L., Maignien, L., Chalopin, M., Huvet, A., Rinnert, E., Morrison, H., Kerninon, S., Cassone, A.-L., Lambert, C., & Reveillaud, J. (2018). Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size. Environmental Pollution, 242, 614–625.

    Article  Google Scholar 

  • Gibiansky, M. L., Conrad, J. C., Jin, F., Gordon, V. D., Motto, D. A., Mathewson, M. A., Stopka, W. G., Zelasko, D. C., Shrout, J. D., & Wong, G. C. (2010). Bacteria use type IV pili to walk upright and detach from surfaces. Science, 330, 197–197.

    Article  CAS  Google Scholar 

  • Guo, X., Pang, J., Chen, S., & Jia, H. (2018). Sorption properties of tylosin on four different microplastics. Chemosphere, 209, 240–245.

    Article  CAS  Google Scholar 

  • Guo, X., & Wang, J. (2019). The chemical behaviors of microplastics in marine environment: A review. Marine Pollution Bulletin, 142, 1–14.

    Article  CAS  Google Scholar 

  • Guo, X., Wang, X., Zhou, X., Kong, X., Tao, S., & Xing, B. (2012). Sorption of four hydrophobic organic compounds by three chemically distinct polymers: Role of chemical and physical composition. Environmental Science & Technology, 46, 7252–7259.

    Article  CAS  Google Scholar 

  • Hameroff, S. R. (1988). Coherence in the cytoskeleton: Implications for biological information processing. In H. Fröhlich (Ed.), Biological coherence and response to external stimuli (pp. 242–265). Springer.

  • Hoellein, T., Rojas, M., Pink, A., Gasior, J., & Kelly, J. (2014). Anthropogenic litter in urban freshwater ecosystems: Distribution and microbial interactions. PLoS ONE, 9, e98485.

    Article  Google Scholar 

  • Imhof, H. K., Laforsch, C., Wiesheu, A. C., Schmid, J., Anger, P. M., Niessner, R., & Ivleva, N. P. (2016). Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes. Water Research, 98, 64–74. https://doi.org/10.1016/j.watres.2016.03.015

    Article  CAS  Google Scholar 

  • Isobe, A., Uchida, K., Tokai, T., & Iwasaki, S. (2015). East Asian seas: A hot spot of pelagic microplastics. Marine Pollution Bulletin, 101, 618–623.

    Article  CAS  Google Scholar 

  • Jiang, P., Zhao, S., Zhu, L., & Li, D. (2018). Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary. Science of the Total Environment, 624, 48–54.

    Article  CAS  Google Scholar 

  • Johnson, L. R. (2008). Microcolony and biofilm formation as a survival strategy for bacteria. Journal of Theoretical Biology, 251, 24–34. https://doi.org/10.1016/j.jtbi.2007.10.039

    Article  CAS  Google Scholar 

  • Kapp, K. J., & Yeatman, E. (2018). Microplastic hotspots in the snake and lower Columbia rivers: A journey from the greater Yellowstone ecosystem to the Pacific Ocean. Environmental Pollution, 241, 1082–1090. https://doi.org/10.1016/j.envpol.2018.06.033

    Article  CAS  Google Scholar 

  • Kesy, K., Oberbeckmann, S., Kreikemeyer, B., Labrenz, M. (2019). Spatial environmental heterogeneity determines young biofilm assemblages on microplastics in Baltic sea mesocosms. Frontiers in Microbiology 10. ARTN 1665 https://doi.org/10.3389/fmicb.2019.01665

  • Kirstein, I. V., Kirmizi, S., Wichels, A., Garin-Fernandez, A., Erler, R., Loder, M., & Gerdts, G. (2016). Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Marine Environmental Research, 120, 1–8. https://doi.org/10.1016/j.marenvres.2016.07.004

    Article  CAS  Google Scholar 

  • Küçükavşar, S., Gökdağ, K., Kıdeyş, A. E., & Karahan, A. (2018). Metataxonomics for the micro-plastic and other particle attached habitats in the northeastern Mediterranean Sea. 9. https://hdl.handle.net/11511/71906

  • Law, K. L., & Thompson, R. C. (2014). Microplastics in the seas. Science, 345, 144–145. https://doi.org/10.1126/science.1254065

    Article  CAS  Google Scholar 

  • Li, Q., Yu, S. L., Li, L., Liu, G. C., Gu, Z. Y., Liu, M. M., Liu, Z. Y., Ye, Y. B., Xia, Q., Ren, L. M. (2017). Microbial communities shaped by treatment processes in a drinking water treatment plant and their contribution and threat to drinking water safety. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.02465

  • Li, W., Zhang, Y., Wu, N., Zhao, Z., Wa, Xu., Ma, Y., & Niu, Z. (2019). Colonization characteristics of bacterial communities on plastic debris influenced by environmental factors and polymer types in the Haihe estuary of Bohai bay, China. Environmental Science & Technology, 53, 10763–10773. https://doi.org/10.1021/acs.est.9b03659

    Article  CAS  Google Scholar 

  • Li, Y., Li, W. Y., Jarvis, P., Zhou, W., Zhang, J. P., Chen, J. P., Tan, Q. W., Tian, Y. (2020). Occurrence, removal and potential threats associated with microplastics in drinking water sources. Journal of Environmental Chemical Engineering, 8. https://doi.org/10.1016/j.jece.2020.104527

  • Magoc, T., & Salzberg, S. L. (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27, 2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  Google Scholar 

  • Mammo, F. K., Amoah, I. D., Gani, K. M., Pillay, L., Ratha, S. K., Bux, F., Kumari, S. (2020). Microplastics in the environment: Interactions with microbes and chemical contaminants. Science of the Total Environment, 743. https://doi.org/10.1016/j.scitotenv.2020.140518

  • Mao, Y. F., Li, H., Gu, W.K., Yang, G. F., Liu, Y., He, Q. (2020). Distribution and characteristics of microplastics in the Yulin River, China: Role of environmental and spatial factors. Environmental Pollution, 265. https://doi.org/10.1016/j.envpol.2020.115033

  • McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J., & Kelly, J. J. (2014). Microplastic is an abundant and distinct microbial habitat in an urban river. Environmental Science & Technology, 48, 11863–11871. https://doi.org/10.1021/es503610r

    Article  CAS  Google Scholar 

  • McCormick, A. R., Hoellein, T. J., London, M. G., Hittie, J., Scott, J. W., & Kelly, J. J. (2016). Microplastic in surface waters of urban rivers: Concentration, sources, and associated bacterial assemblages. Ecosphere, 7, e01556.

    Article  Google Scholar 

  • Miao, L., Wang, P., Hou, J., Yao, Y., Liu, Z., Liu, S., & Li, T. (2019). Distinct community structure and microbial functions of biofilms colonizing microplastics. Science of the Total Environment, 650, 2395–2402. https://doi.org/10.1016/j.scitotenv.2018.09.378

    Article  CAS  Google Scholar 

  • Miranda, D. D., & de Carvalho-Souza, G. F. (2016). Are we eating plastic-ingesting fish? Marine Pollution Bulletin, 103, 109–114. https://doi.org/10.1016/j.marpolbul.2015.12.035

    Article  CAS  Google Scholar 

  • Niu, L., Li, Y., Li, Y., Hu, Q., Wang, C., Hu, J., Zhang, W., Wang, L., Zhang, C., & Zhang, H. (2021). New insights into the vertical distribution and microbial degradation of microplastics in urban river sediments. Water Research, 188, 116449.

    Article  CAS  Google Scholar 

  • Notomista, E., Pennacchio, F., Cafaro, V., Smaldone, G., Izzo, V., Troncone, L., Varcamonti, M., & Di Donato, A. (2011). The marine isolate novosphingobium sp. PP1Y shows specific adaptation to use the aromatic fraction of fuels as the sole carbon and energy source. Microbial Ecology, 61, 582–594.

    Article  CAS  Google Scholar 

  • Oberbeckmann, S., Löder, M. G., & Labrenz, M. (2015). Marine microplastic-associated biofilms–A review. Environmental Chemistry, 12, 551–562.

    Article  CAS  Google Scholar 

  • Oberbeckmann, S., Loeder, M. G., Gerdts, G., & Osborn, A. M. (2014). Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in northern European waters. FEMS Microbiology Ecology, 90, 478–492.

    Article  CAS  Google Scholar 

  • Ogonowski, M., Motiei, A., Ininbergs, K., Hell, E., Gerdes, Z., Udekwu, K. I., Bacsik, Z., & Gorokhova, E. (2018). Evidence for selective bacterial community structuring on microplastics. Environmental Microbiology, 20, 2796–2808. https://doi.org/10.1111/1462-2920.14120

    Article  CAS  Google Scholar 

  • Olson, M. E., Ceri, H., Morck, D. W., Buret, A. G., & Read, R. R. (2002). Biofilm bacteria: Formation and comparative susceptibility to antibiotics. Canadian Journal of Veterinary Research, 66, 86.

    Google Scholar 

  • Panno, SV., Kelly, W. R., Scott, J., Zheng, W., McNeish, R. E., Holm, N., Hoellein, T. J., Baranski, E. L. (2019). Microplastic contamination in karst groundwater systems. Groundwater 57:189–196. https://doi.org/10.1111/gwat.12862

  • Parks, D. H., Tyson, G. W., Hugenholtz, P., & Beiko, R. G. (2014). STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics, 30, 3123–3124.

    Article  CAS  Google Scholar 

  • Parrish, K., & Fahrenfeld, N. L. (2019). Microplastic biofilm in fresh- and wastewater as a function of microparticle type and size class. Environmental Science-Water Research & Technology, 5, 495–505. https://doi.org/10.1039/c8ew00712h

    Article  CAS  Google Scholar 

  • Parthasarathy, A., Tyler, A. C., Hoffman, M. J., Savka, M. A., & Hudson, A. O. (2019). Is plastic pollution in aquatic and terrestrial environments a driver for the transmission of pathogens and the evolution of antibiotic resistance? Environmental Science & Technology, 53, 1744–1745. https://doi.org/10.1021/acs.est.8b07287

  • Pivokonsky, M., Cermakova, L., Novotna, K., Peer, P., Cajthaml, T., & Janda, V. (2018). Occurrence of microplastics in raw and treated drinking water. Science of the Total Environment, 643, 1644–1651. https://doi.org/10.1016/j.scitotenv.2018.08.102

    Article  CAS  Google Scholar 

  • Ren, Z., Qu, X., Peng, W., Yu, Y., & Zhang, M. (2019). Nutrients drive the structures of bacterial communities in sediments and surface waters in the River-Lake system of poyang lake. Water, 11, 930.

    Article  CAS  Google Scholar 

  • Rochman, C. M., Manzano, C., Hentschel, B. T., Simonich, S. L. M., & Hoh, E. (2013). Polystyrene plastic: A source and sink for polycyclic aromatic hydrocarbons in the marine environment. Environmental Science & Technology, 47, 13976–13984.

    Article  CAS  Google Scholar 

  • Roeder, R. S., Heeg, K., Tarne, P., Benölken, J. K., Schaule, G., Bendinger, B., Flemming, H. -C., & Szewzyk, U. (2010). Influence of materials, water qualities and disinfection methods on the drinking water biofilm community. Water Practice and Technology5, wpt2010082. https://doi.org/10.2166/wpt.2010.082

  • Rumbaugh, K. P., Sauer, K. (2020). Biofilm dispersion. Nature reviews microbiology 18:571–586. https://doi.org/10.1038/s41579-020-0385-0

  • Schloss, P. D. (2020). Reintroducing mothur: 10 years later. Applied and Environmental Microbiology, 86, e02343-e2319.

    Article  CAS  Google Scholar 

  • Schulze-Röbbecke, R., & Fischeder, R. (1989). Mycobacteria in biofilms. Zentralblatt Für Hygiene Und Umweltmedizin, 188, 385–390.

    Google Scholar 

  • Schulze-Röbbecke, R., Janning, B., & Fischeder, R. (1992). Occurrence of mycobacteria in biofilm samples. Tubercle and Lung Disease, 73, 141–144.

    Article  Google Scholar 

  • Schwake, D. O., Alum, A., & Abbaszadegan, M. (2015). Impact of environmental factors on Legionella populations in drinking water. Pathogens, 4, 269–282.

    Article  Google Scholar 

  • Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biology, 12, R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  Google Scholar 

  • Shen, B. A., & Landick, R. (2019). Transcription of bacterial chromatin. Journal of Molecular Biology, 431, 4040–4066.

    Article  CAS  Google Scholar 

  • Shen, M. C., Zhu, Y., Zhang, Y. X., Zeng, G. M., Wen, X. F., Yi, H., Ye, S. J., Ren, X. Y., & Song, B. (2019). Micro(nano)plastics: Unignorable vectors for organisms. Marine Pollution Bulletin, 139, 328–331. https://doi.org/10.1016/j.marpolbul.2019.01.004

    Article  CAS  Google Scholar 

  • Tatchou-Nyamsi-König, J. A., Dailloux, M., & Block, J. C. (2009). Survival of mycobacterium avium attached to polyethylene terephtalate (PET) water bottles. Journal of Applied Microbiology, 106, 825–832.

    Article  Google Scholar 

  • Taylor, M., Ross, K., & Bentham, R. (2009). Legionella, protozoa, and biofilms: Interactions within complex microbial systems. Microbial Ecology, 58, 538–547.

    Article  Google Scholar 

  • To, K., Cao, R., Yegiazaryan, A., Owens, J., & Venketaraman, V. (2020). General overview of nontuberculous mycobacteria opportunistic pathogens: Mycobacterium avium and mycobacterium abscessus. Journal of Clinical Medicine, 9, 2541.

    Article  CAS  Google Scholar 

  • Uurasjarvi, E., Hartikainen, S., Setala, O., Lehtiniemi, M., & Koistinen, A. (2020). Microplastic concentrations, size distribution, and polymer types in the surface waters of a northern European lake. Water Environment Research, 92, 149–156. https://doi.org/10.1002/wer.1229

    Article  CAS  Google Scholar 

  • Vosshage, A. T. L., Neu, T. R., & Gabel, F. (2018). Plastic alters biofilm quality as food resource of the freshwater gastropod radix balthica. Environmental Science and Technology, 52, 11387–11393. https://doi.org/10.1021/acs.est.8b02470

    Article  CAS  Google Scholar 

  • Wang, S., Xue, N., Li, W., Zhang, D., Pan, X., & Luo, Y. (2020a). Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters. Science of the Total Environment, 708, 134594.

    Article  CAS  Google Scholar 

  • Wang, W. F., Ndungu, A. W., Li, Z., & Wang, J. (2017). Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Science of the Total Environment, 575, 1369–1374. https://doi.org/10.1016/j.scitotenv.2016.09.213

    Article  CAS  Google Scholar 

  • Wang, Z. F., Lin, T., Chen, W. (2020b). Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Science of the Total Environment, 700. https://doi.org/10.1016/j.scitotenv.2019.134520

  • Ward, A. C., & Bora, N. (2006). Diversity and biogeography of marine actinobacteria. Current Opinion in Microbiology, 9, 279–286.

    Article  CAS  Google Scholar 

  • Wu, X. J., Pan, J., Li, M., Li, Y., Bartlam, M., Wang, Y. Y. (2019). Selective enrichment of bacterial pathogens by microplastic biofilm. Water Research 165. https://doi.org/ARTN11497910.1016/j.watres.2019.114979

  • Xue, N. N., Wang, L. Y., Li, W. F., Wang, S. S., Pan, X. L., Zhang, D. Y.  (2020). Increased inheritance of structure and function of bacterial communities and pathogen propagation in plastisphere along a river with increasing antibiotics pollution gradient. Environmental Pollution, 265. https://doi.org/10.1016/j.envpol.2020.114641

  • Yan, J., & Bassler, B. L. (2019). Surviving as a community: Antibiotic tolerance and persistence in bacterial biofilms. Cell Host & Microbe, 26, 15–21. https://doi.org/10.1016/j.chom.2019.06.002

    Article  CAS  Google Scholar 

  • Yang, Y., Wikiel, A. J., Dall’Agnol, L. T., Eloy, P., Genet, M. J., Moura, J. J., Sand, W., Dupont-Gillain, C. C., & Rouxhet, P. G. (2016). Proteins dominate in the surface layers formed on materials exposed to extracellular polymeric substances from bacterial cultures. Biofouling, 32, 95–108. https://doi.org/10.1080/08927014.2015.1114609

    Article  CAS  Google Scholar 

  • Zettler, E. R., Mincer, T. J., & Amaral-Zettler, L. A. (2013). Life in the “Plastisphere”: Microbial communities on plastic marine debris. Environmental Science & Technology, 47, 7137–7146. https://doi.org/10.1021/es401288x

    Article  CAS  Google Scholar 

  • Zhao, Y., Gao, J., Wang, Z., Dai, H., & Wang, Y. (2021). Responses of bacterial communities and resistance genes on microplastics to antibiotics and heavy metals in sewage environment. Journal of Hazardous Materials, 402, 123550.

    Article  CAS  Google Scholar 

  • Zhou, J., Deng, Y., Luo, F., He, Z., Tu, Q., & Zhi, X. (2010). Functional Molecular Ecological Networks. Mbio, 1, e00169-e110.

    Google Scholar 

Download references

Acknowledgements

Sampling assistance was provided by National Inland Waterway Regulation Engineering Research Center. Laboratory assistance was provided by Engineering Laboratory of Environmental & Hydraulic Engineering, Chongqing Municipal Development and Reform Commission.

Funding

This work was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201900715), and the Foundation of Key Laboratory of Yangtze River Water Environment, Ministry of Education (Tongji University), China (No. YRWEF201903).

Author information

Authors and Affiliations

Authors

Contributions

W Yang and Q Li contributed to the study conception and supervision. Experiment was designed and conducted by DH Kou. Material preparation and data collection were performed by YP Hu. Data analysis was performed by YP Hu, W Tang and QK Chen. The first draft of the manuscript was written by Q Li. SS Que, XF Zhao and DQ Zhao commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei Yang.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2.99 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Hu, Y., Kou, D. et al. Factors Impacting Microplastic Biofilm Community and Biological Risks Posed by Microplastics in Drinking Water Sources. Water Air Soil Pollut 233, 179 (2022). https://doi.org/10.1007/s11270-022-05649-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05649-y

Keywords

Navigation