Skip to main content

Advertisement

Log in

Legionella, Protozoa, and Biofilms: Interactions Within Complex Microbial Systems

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Currently, the investigation of Legionella ecology falls into two distinct areas of research activity: (1) that Legionella multiply within water sources by parasitizing amoebic or ciliate hosts or (2) that Legionella grows extracellularly within biofilms. Less focus has been given to the overlaps that may occur between these two areas or the likelihood that Legionella employs multiple survival strategies to persist in water sources. It is likely that Legionella interacts with protozoa, bacteria, algae, fungi, etc., and biofilm components in a more complex fashion than multiplication or death due to the presence or absence of single components of these complex microbial systems. This paper addresses gaps that exist in the understanding of Legionella ecology and serves to pinpoint areas of future research. To assume that only one other class of organism is important to Legionella ecology may limit our understanding of how this bacterium proliferates in heated water sources and also limit our strategies for its control in the built environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann R, Springer N, Schonhuber W, Ludwig W, Schmid EN, Muller KD, Michel R (1997) Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl Environ Microbiol 63:115–121

    PubMed  CAS  Google Scholar 

  2. AS/NZS 3666.1 (2002) Air-handling and water systems of buildings. Standards Australia, Sydney

    Google Scholar 

  3. Atlas RM (1999) Legionella: from environmental habitats to disease pathology, detection and control. Environ Microbiol 1:283–293

    Article  PubMed  CAS  Google Scholar 

  4. Atlas RM, Williams JF, Huntington MK (1995) Legionella contamination of dental-unit waters. Appl Environ Microbiol 61:1208–1213

    PubMed  CAS  Google Scholar 

  5. Barbaree JM, Fields BS, Feeley JC, Gorman GW, Martin WT (1986) Isolation of protozoa from water associated with a legionellosis outbreak and demonstration of intracellular multiplication of Legionella pneumophila. Appl Environ Microbiol 51:422–424

    PubMed  CAS  Google Scholar 

  6. Barker J, Brown MR, Collier PJ, Farrell I, Gilbert P (1992) Relationship between Legionella pneumophila and Acanthamoeba polyphaga: physiological status and susceptibility to chemical inactivation. Appl Environ Microbiol 58:2420–2425

    PubMed  CAS  Google Scholar 

  7. Barker J, Scaife H, Brown MR (1995) Intraphagocytic growth induces an antibiotic-resistant phenotype of Legionella pneumophila. Antimicrob Agents Chemother 39:2684–2688

    PubMed  CAS  Google Scholar 

  8. Baumgartner M, Yapi A, Gröbner-Ferreira R, Stetter KO (2003) Cultivation and properties of Echinamoeba thermarum n. sp., an extremely thermophilic amoeba thriving in hot springs. Extremophiles 7:267–274

    Article  PubMed  Google Scholar 

  9. Berendt RF (1981) Influence of blue-green algae (cyanobacteria) on survival of Legionella pneumophila in aerosols. Infect Immun 32:690–692

    PubMed  CAS  Google Scholar 

  10. Bhopal RS, Fallon RJ, Buist EC, Black RJ, Urquhart JD (1991) Proximity of the home to a cooling tower and risk of non-outbreak Legionnaires' disease. Br Med J 302:378–383

    Article  CAS  Google Scholar 

  11. Bollin GE, Plouffe JF, Para MF, Hackman B (1985) Aerosols containing Legionella pneumophila generated by shower heads and hot-water faucets. Appl Environ Microbiol 50:1128–1131

    PubMed  CAS  Google Scholar 

  12. Bollin GE, Plouffe JF, Para MF, Prior RB (1985) Difference in virulence of environmental isolates of Legionella pneumophila. J Clin Microbiol 21:674–677

    PubMed  CAS  Google Scholar 

  13. Brooun A, Liu S, Lewis K (2000) A dose–response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44:640–646

    Article  PubMed  CAS  Google Scholar 

  14. Byrne B, Swanson MS (1998) Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66:3029–3034

    PubMed  CAS  Google Scholar 

  15. Campanac C, Pineau L, Payard A, Baziard-Mouysset G, Roques C (2002) Interactions between biocide cationic agents and bacterial biofilms. Antimicrob Agents Chemother 46:1469–1474

    Article  PubMed  CAS  Google Scholar 

  16. Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Microbiol Mol Biol Rev 33:476–504

    CAS  Google Scholar 

  17. Cirillo JD, Falkow S, Tompkins LS (1994) Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion. Infect Immun 62:3254–3261

    PubMed  CAS  Google Scholar 

  18. Costerton WJ, Wilson M (2004) Introducing biofilms. Biofilms 1:1–4

    Article  Google Scholar 

  19. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  PubMed  CAS  Google Scholar 

  20. De Beer D, Srinivasan R, Stewart PS (1994) Direct measurement of chlorine penetration into biofilms during disinfection. Appl Environ Microbiol 60:4339–4344

    PubMed  Google Scholar 

  21. Declerck P, Behets J, Van Hoef V, Ollevier F (2007) Detection of Legionella spp. and some of their amoeba hosts in floating biofilms from anthropogenic and natural aquatic environments. Water Res 41:3159–3167

    Article  PubMed  CAS  Google Scholar 

  22. Dietrich C, Heuner K, Brand BC, Hacker J, Steinert M (2001) Flagellum of Legionella pneumophila positively affects the early phase of infection of eukaryotic host cells. Infect Immun 69:2116–2122

    Article  PubMed  CAS  Google Scholar 

  23. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    PubMed  Google Scholar 

  24. Dunnebacke TH, Schuster FL, Yagi S, Booton GC (2004) Balamuthia mandrillaris from soil samples. Microbiology 150:2837–2842

    Article  PubMed  CAS  Google Scholar 

  25. Eichinger L, Rivero-Crespo F (2006) Dictyostelium discoideum protocols. Humana, New York

    Google Scholar 

  26. Ellis BD, Butterfield P, Jones WL, Mcfeters GA, Camper AK (2000) Effects of carbon source, carbon concentration, and chlorination on growth related parameters of heterotrophic biofilm bacteria. Microb Ecol 38:330–347

    Article  Google Scholar 

  27. Essig A, Heinemann M, Simnacher U, Marre R (1997) Infection of Acanthamoeba castellanii by Chlamydia pneumoniae. Appl Environ Microbiol 63:1396–1399

    PubMed  CAS  Google Scholar 

  28. Ewann F, Hoffman PS (2006) Cysteine metabolism in Legionella pneumophila: characterization of an L-cystine-utilizing mutant. Appl Environ Microbiol 72:3993–4000

    Article  PubMed  CAS  Google Scholar 

  29. Fields BS, Benson RF, Besser RE (2002) Legionella and Legionnaires' disease: 25 years of investigation. Clin Microbiol Rev 15:506–526

    Article  PubMed  Google Scholar 

  30. Fields BS, Shotts EB Jr, Feeley JC, Gorman GW, Martin WT (1984) Proliferation of Legionella pneumophila as an intracellular parasite of the ciliated protozoan Tetrahymena pyriformis. Appl Environ Microbiol 47:467–471

    PubMed  CAS  Google Scholar 

  31. Fliermans CB (1996) Ecology of Legionella: from data to knowledge with a little wisdom. Microb Ecol 32:203–228

    Article  PubMed  Google Scholar 

  32. Fritsche TR, Gautom RK, Seyedirashti S, Bergeron DL, Lindquist TD (1993) Occurrence of bacterial endosymbionts in Acanthamoeba spp. isolated from corneal and environmental specimens and contact lenses. J Clin Microbiol 31:1122–1126

    PubMed  CAS  Google Scholar 

  33. Garstecki T, Brown S, De Jonckheere JF (2005) Description of Vahlkampfia signyensis n. sp. (Heterolobosea), based on morphological, ultrastructural and molecular characteristics. Eur J Protistol 41:119–127

    Article  Google Scholar 

  34. George JR, Pine L, Reeves MW, Harrell WK (1980) Amino acid requirements of Legionella pneumophila. J Clin Microbiol 11:286–291

    PubMed  CAS  Google Scholar 

  35. Guerrieri E, Bondi M, Ciancio C, Borella P, Messi P (2005) Micro- and macromethod assays for the ecological study of Legionella pneumophila. FEMS Microbiol Lett 252:113–119

    Article  PubMed  CAS  Google Scholar 

  36. Hagele S, Kohler R, Merkert H, Schleicher M, Hacker J, Steinert M (2000) Dictyostelium discoideum: a new host model system for intracellular pathogens of the genus Legionella. Cell Microbiol 2:165–171

    Article  PubMed  CAS  Google Scholar 

  37. Hammer BK, Bassler BL (2003) Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol 50:101–104

    Article  PubMed  CAS  Google Scholar 

  38. Hassett DJ, Ma J-U, Elkins JG, Mcdermott TR, Ochsner UA, West SEH, Huang C-T, Fredericks J, Burnett S, Stewart PS, Mcfeters G, Passador L, Iglewski BH (1999) Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34:1082–1093

    Article  PubMed  CAS  Google Scholar 

  39. Heuner K, Steinert M (2003) The flagellum of Legionella pneumophila and its link to the expression of the virulent phenotype. Int J Med Microbiol 293:133–143

    Article  PubMed  CAS  Google Scholar 

  40. Hijnen WAM, Beerendonk EF, Medema GJ (2006) Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo) cysts in water: a review. Water Res 40:3–22

    Article  PubMed  CAS  Google Scholar 

  41. Hilbi H, Segal G, Shuman HA (2001) IcmDot-dependent upregulation of phagocytosis by Legionella pneumophila. Mol Microbiol 42:603

    Article  PubMed  CAS  Google Scholar 

  42. Hoffmann RL, Michel R (2001) Hartmannella vermiformis (gymnamoebia) isolated from tap water harboured simultaneously two different bacterial endocytobionts. Endocytobiosis Cell Res 14:103–113

    Google Scholar 

  43. Holden EP, Winkler HH, Wood DO, Leinbach ED (1984) Intracellular growth of Legionella pneumophila within Acanthamoeba castellanii Neff. Infect Immun 45:18–24

    PubMed  CAS  Google Scholar 

  44. Horn M, Wagner M, Muller K-D, Schmid EN, Fritsche TR, Schleifer K-H, Michel R (2000) Neochlamydia hartmannellae gen. nov., sp. nov. (Parachlamydiaceae), an endoparasite of the amoeba Hartmannella vermiformis. Microbiology 146:1231–1239

    PubMed  CAS  Google Scholar 

  45. Horwitz MA (1984) Phagocytosis of the legionnaires' disease bacterium (Legionella pneumophila) occurs by a novel mechanism: engulfment within a pseudopod coil. Cell 36:27–33

    Article  PubMed  CAS  Google Scholar 

  46. Hughes MS, Steele TW (1994) Occurrence and distribution of Legionella species in composted plant materials. Appl Environ Microbiol 60:2003–2005

    PubMed  CAS  Google Scholar 

  47. Hughes KA, Sutherland IW, Jones MV (1998) Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144:3039–3047

    Article  PubMed  CAS  Google Scholar 

  48. Jolis D, Nec Lam C, Pitt P (2001) Particle effects on ultraviolet disinfection of coliform bacteria in recycled water. Water Environ Res 73:233–236

    Article  PubMed  CAS  Google Scholar 

  49. Jooste PJ, Hugo CJ (1999) The taxonomy, ecology and cultivation of bacterial genera belonging to the family Flavobacteriaceae. Int J Food Microbiol 53:81–94

    Article  PubMed  CAS  Google Scholar 

  50. Kahane S, Dvoskin B, Mathias M, Friedman MG (2001) Infection of Acanthamoeba polyphaga with Simkania negevensis and S. negevensis survival within amoebal cysts. Appl Environ Microbiol 67:4789–4795

    Article  PubMed  CAS  Google Scholar 

  51. Kim BR, Anderson JE, Mueller SA, Gaines WA, Kendall AM (2002) Literature review—efficacy of various disinfectants against Legionella in water systems. Water Res 36:4433–4444

    Article  PubMed  CAS  Google Scholar 

  52. Konishi T, Yamashiro T, Koide M, Nishizono A (2006) Influence of temperature on growth of Legionella pneumophila biofilm determined by precise temperature gradient incubator. J Biosci Bioeng 101:478–484

    Article  PubMed  CAS  Google Scholar 

  53. Kuiper MW, Wullings BA, Akkermans ADL, Beumer RR, Van Der Kooij D (2004) Intracellular proliferation of Legionella pneumophila in Hartmannella vermiformis in aquatic biofilms grown on plasticized polyvinyl chloride. Appl Environ Microbiol 70:6826–6833

    Article  PubMed  CAS  Google Scholar 

  54. Lammertyn E, Vande Voorde J, Meyen E, Maes L, Mast J, Anné J (2007) Evidence for the presence of Legionella bacteriophages in environmental water samples. Microb Ecol 56(1):191–197

    Article  PubMed  Google Scholar 

  55. La Scola B, Raoult D (2001) Survival of Coxiella burnetii within free-living amoeba Acanthamoeba castellanii. Clin Microbiol Infect 7:75–79

    Article  PubMed  Google Scholar 

  56. Leoni E, De Luca G, Legnani PP, Sacchetti R, Stampi S, Zanetti F (2005) Legionella waterline colonization: detection of Legionella species in domestic, hotel and hospital hot water systems. J Appl Microbiol 98:373–379

    Article  PubMed  CAS  Google Scholar 

  57. Mampel J, Spirig T, Weber SS, Haagensen JAJ, Molin S, Hilbi H (2006) Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions. Appl Environ Microbiol 72:2885–2895

    Article  PubMed  CAS  Google Scholar 

  58. Marciano-Cabral F (1988) Biology of Naegleria spp. Microbiol Rev 52:114–133

    PubMed  CAS  Google Scholar 

  59. Martínez AJ, Visvesvara GS (2001) Balamuthia mandrillaris infection. J Med Microbiol 50:205–207

    PubMed  Google Scholar 

  60. Maya C, Beltrán N, Jiménez B, Bonilla P (2003) Evaluation of the UV disinfection process in bacteria and amphizoic amoebae inactivation. Water Supply 3:285–291

    CAS  Google Scholar 

  61. Molofsky AB, Swanson MS (2004) Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53:29–40

    Article  PubMed  CAS  Google Scholar 

  62. Murga R, Forster TS, Brown E, Pruckler JM, Fields BS, Donlan RM (2001) Role of biofilms in the survival of Legionella pneumophila in a model potable-water system. Microbiology 147:3121–3126

    PubMed  CAS  Google Scholar 

  63. Muster P, Binder A, Schneider K, Bachofen R (1983) Influence of temperature and ph on the growth of the thermophilic cyanobacterium Mastigocladus laminosus in continuous culture. Plant Cell Physiol 24:273–288

    Google Scholar 

  64. Nash TW, Libby DM, Horwitz MA (1984) Interaction between the legionnaires' disease bacterium (Legionella pneumophila) and human alveolar macrophages. Influence of antibody, lymphokines, and hydrocortisone. J Clin Invest 74:771–782

    Article  PubMed  CAS  Google Scholar 

  65. Nechushtai R, Muster P, Binder A, Liveanu V, Nelson N (1983) Photosystem I reaction center from the thermophilic cyanobacterium Mastigocladus laminosus. Proc Natl Acad Sci U S A 80:1179–1183

    Article  PubMed  CAS  Google Scholar 

  66. Ohno A, Kato N, Yamada K, Yamaguchi K (2003) Factors influencing survival of Legionella pneumophila serotype 1 in hot spring water and tap water. Appl Environ Microbiol 69:2540–2547

    Article  PubMed  CAS  Google Scholar 

  67. Pang CM, Liu WT (2006) Biological filtration limits carbon availability and affects downstream biofilm formation and community structure. Appl Environ Microbiol 72:5702–5712

    Article  PubMed  CAS  Google Scholar 

  68. Parsek MR, Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci U S A 97:8789–8793

    Article  PubMed  CAS  Google Scholar 

  69. Paszko-Kolva C, Yamamoto H, Shahamat M, Sawyer TK, Morris G, Colwell RR (1991) Isolation of amoebae and Pseudomonas and Legionella spp. from eyewash stations. Appl Environ Microbiol 57:163–167

    PubMed  CAS  Google Scholar 

  70. Pruckler JM, Benson RF, Moyenuddin M, Martin WT, Fields BS (1995) Association of flagellum expression and intracellular growth of Legionella pneumophila. Infect Immun 63:4928–4932

    PubMed  CAS  Google Scholar 

  71. Reeves MW, Pine L, Hutner SH, George JR, Harrell WK (1981) Metal requirements of Legionella pneumophila. J Clin Microbiol 13:688–695

    PubMed  CAS  Google Scholar 

  72. Rogers J, Dowsety AB, Dennis PJ, Lee JV, Keevil CW (1994) Influence of temperature and plumbing material selection on biofilm formation and growth of Legionella pneumophila in a model potable water system containing complex microbial flora. Appl Environ Microbiol 60:1585–1592

    PubMed  CAS  Google Scholar 

  73. Rogers J, Keevil CW (1992) Immunogold and fluorescein immunolabelling of Legionella pneumophila within an aquatic biofilm visualized by using episcopic differential interference contrast microscopy. Appl Environ Microbiol 58:2326–2330

    PubMed  CAS  Google Scholar 

  74. Rohr U, Weber S, Michel R, Selenka F, Wilhelm M (1998) Comparison of free-living amoebae in hot water systems of hospitals with isolates from moist sanitary areas by identifying genera and determining temperature tolerance. Appl Environ Microbiol 64:1822–1824

    PubMed  CAS  Google Scholar 

  75. Rowbotham TJ (1980) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33:1179–1183

    Article  PubMed  CAS  Google Scholar 

  76. Schuster FL, Dunnebacke TH, Booton GC, Yagi S, Kohlmeier CK, Glaser C, Vugia D, Bakardjiev A, Azimi P, Maddux-Gonzalez M, Martinez AJ, Visvesvara GS (2003) Environmental isolation of Balamuthia mandrillaris associated with a case of amebic encephalitis. J Clin Microbiol 41:3175–3180

    Article  PubMed  Google Scholar 

  77. Schuster FL, Visvesvara GS (1996) Axenic growth and drug sensitivity studies of Balamuthia mandrillaris, an agent of amebic meningoencephalitis in humans and other animals. J Clin Microbiol 34:385–388

    PubMed  CAS  Google Scholar 

  78. Schwartz T, Hoffman S, Obst U (2003) Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system. J Appl Microbiol 95:591–601

    Article  PubMed  CAS  Google Scholar 

  79. Shadrach WS, Rydzewski K, Laube U, Holland G, Ozel M, Kiderlen AF, Flieger A (2005) Balamuthia mandrillaris, free-living amoeba and opportunistic agent of encephalitis, is a potential host for Legionella pneumophila bacteria. Appl Environ Microbiol 71:2244–2249

    Article  PubMed  CAS  Google Scholar 

  80. Sheehan KB, Henson JM, Ferris MJ (2005) Legionella species diversity in an acidic biofilm community in Yellowstone national park. Appl Environ Microbiol 71:507–511

    Article  PubMed  CAS  Google Scholar 

  81. Smith-Somerville HE, Huryn VB, Walker C, Winters AL (1991) Survival of Legionella pneumophila in the cold-water ciliate Tetrahymena vorax. Appl Environ Microbiol 57:2742–2749

    PubMed  CAS  Google Scholar 

  82. Spratt DA, Pratten J (2005) Carbon substrate utilization as a method of studying biofilm development. Biofilms 2:239–243

    Article  Google Scholar 

  83. Steele TW (1993) Interactions between soil amoebae and soil Legionellae. In: Barbaree AM, Breiman RF, Dufour AP (eds) Legionella: current status and emerging perspectives. American Society for Microbiology, Washington

    Google Scholar 

  84. Steele TW, Moore CV, Sangster N (1990) Distribution of Legionella longbeachae serogroup 1 and other Legionellae in potting soils in Australia. Appl Environ Microbiol 56:2984–2988

    PubMed  CAS  Google Scholar 

  85. Stone BJ, Kwaik YA (1998) Expression of multiple pili by Legionella pneumophila: identification and characterization of a type IV pilin gene and its role in adherence to mammalian and protozoan cells. Infect Immun 66:1768–1775

    PubMed  CAS  Google Scholar 

  86. Storey MV, Winiecka-Krusnell J, Ashbolt NJ, Stenström TA (2004) The efficacy of heat and chlorine treatment against thermotolerant Acanthamoebae and Legionellae. Scand J Infect Dis 36:656–662

    Article  PubMed  CAS  Google Scholar 

  87. Sutherland EE, Berk SG (1996) Survival of protozoa in cooling tower biocides. J Ind Microbiol Biotech 16:73–78

    CAS  Google Scholar 

  88. Temmerman R, Vervaeren H, Noseda B, Boon N, Verstraete W (2006) Necrotrophic growth of Legionella pneumophila. Appl Environ Microbiol 72:4323–4328

    Article  PubMed  CAS  Google Scholar 

  89. Thomas V, Bouchez T, Nicolas V, Robert S, Loret JF, Lévi Y (2004) Amoebae in domestic water systems: resistance to disinfection treatments and implication in Legionella persistence. J Appl Microbiol 97:950–963

    Article  PubMed  CAS  Google Scholar 

  90. Tilney LG, Harb OS, Connelly PS, Robinson CG, Roy CR (2001) How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J Cell Sci 114:4637–4650

    PubMed  CAS  Google Scholar 

  91. Tison DL, Pope DH, Cherry WB, Fliermans CB (1980) Growth of Legionella pneumophila in association with blue-green algae (Cyanobacteria). Appl Environ Microbiol 39:456–459

    PubMed  CAS  Google Scholar 

  92. Turner NA, Russell AD, Furr JR, Lloyd D (2000) Emergence of resistance to biocides during differentiation of Acanthamoeba castellanii. J Antimicrob Chemother 46:27–34

    Article  PubMed  CAS  Google Scholar 

  93. Tyndall RL, Domingue EL (1982) Cocultivation of Legionella pneumophila and free-living amoebae. Appl Environ Microbiol 44:954–959

    PubMed  CAS  Google Scholar 

  94. Wadowsky RM, Butler LJ, Cook MK, Verma SM, Paul MA, Fields BS, Keleti G, Sykora JL, Yee RB (1988) Growth-supporting activity for Legionella pneumophila in tap water cultures and implication of hartmannellid amoebae as growth factors. Appl Environ Microbiol 54:2677–2682

    PubMed  CAS  Google Scholar 

  95. Wadowsky RM, Yee RB (1983) Satellite growth of Legionella pneumophila with an environmental isolate of Flavobacterium breve. Appl Environ Microbiol 46:1447–1449

    PubMed  CAS  Google Scholar 

  96. Yamamoto H, Sugiura M, Kusunoki S, Ezaki T, Ikedo M, Yabuuchi E (1992) Factors stimulating propagation of Legionellae in cooling tower water. Appl Environ Microbiol 58:1394–1397

    PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Professor Sharon Berk for her review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, M., Ross, K. & Bentham, R. Legionella, Protozoa, and Biofilms: Interactions Within Complex Microbial Systems. Microb Ecol 58, 538–547 (2009). https://doi.org/10.1007/s00248-009-9514-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9514-z

Keywords

Navigation