Skip to main content

Advertisement

Log in

Spatiotemporal Distribution of Atmospheric Pollutants and Its Relationship with Vegetation Index in the Major Grain-Producing Areas of China

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract  

The problem of air pollution in China is serious, and the air pollution characteristics and influencing factors are varied in different regions. Based on the environmental monitoring data of atmospheric pollutants (PM2.5, PM10, SO2, NO2, CO, and O3) in Henan province, a major grain-producing area of China, we conducted the hot spot analysis and regression analysis and used a geographically weighted regression (GWR) model to explore the spatial and temporal distribution of atmospheric pollutants, and we investigated the relationship between atmospheric pollutants and normalized differential vegetation index (NDVI). According to the spatial distribution pattern, the high value areas of atmospheric pollutants were primarily concentrated in the northern, which was consistent with the distribution results of hot spots. From the perspective of temporal variation, the concentrations of PM2.5, PM10, SO2, NO2, and CO were highest in winter, followed by spring and autumn, and lowest in summer, while O3 showed the opposite variation characteristics. The correlation analysis results showed that PM2.5, PM10, SO2, NO2, and CO had significantly negative correlations with NDVI, while O3 had a significantly positive correlation with NDVI. Results of the GWR model, which was used to detect the spatial relationship between atmospheric pollutants and NDVI, indicated that the woodland vegetation had a more positive influence compared with the cultivated land vegetation on reducing PM2.5 and PM10. Therefore, the increase in woodland vegetation coverage in farming areas can reduce atmospheric pollutants to an extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data supporting Fig. 2, Fig. 4, Fig. 5, and Fig. 6 in the manuscript can be obtained in supplementary materials.

References 

  • Al-Hemoud, A., Gasana, J., Al-Dabbous, A., Alajeel, A., Al-Shatti, A., Behbehani, W., et al. (2019). Exposure levels of air pollution (PM2.5) and associated health risk in Kuwait. Environmental Research, 179, 1–9.

    Article  Google Scholar 

  • Avnery, S., Mauzerall, D. L., Liu, J. F., & Horowitz, L. W. (2011). Global crop yield reductions due to surface ozone exposure 1 Year 2000 crop production losses and economic damage. Atmospheric Environment, 45(13), 2284–2296.

    Article  CAS  Google Scholar 

  • Fotheringham, A. S., Charlton, M. E., & Brunsdon, C. (1998). Geographically weighted regression A natural evolution of the expansion method for spatial data analysis. Environment and Planning A, 30(11), 1905–1927.

    Article  Google Scholar 

  • Hrzenjak, V. V., Kukec, A., Erzen, I., & Stanimirovic, D. (2020). Effects of ultrafine particles in ambient air on primary health care consultations for diabetes in children and elderly population in Ljubljana Slovenia A 5-year time-trend study. International Journal of Environmental Research and Public Health, 17(14), 1–19.

    Google Scholar 

  • Hu, B. F., Shao, S., Fu, Z. Y., Li, Y., Ni, H., Chen, S. C., et al. (2019). Identifying heavy metal pollution hot spots in soil-rice systems A case study in south of Yangtze River Delta, China. Science of the Total Environment, 658, 614–625.

    Article  CAS  Google Scholar 

  • Huang, C., Chen, C. H., Li, L., Cheng, Z., Wang, H. L., Huang, H. Y., et al. (2011). Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region China. Atmospheric Chemistry and Physics, 11(9), 4105–4120.

    Article  CAS  Google Scholar 

  • Huang, R. J., Zhang, Y. L., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y. M., et al. (2014). High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514(7521), 218–222.

    Article  CAS  Google Scholar 

  • Ji, J., Wang, G., Du, X. L., Jin, C., Yang, H. L., Liu, J., et al. (2013). Evaluation of adsorbing haze PM2.5 fine particulate matters with plants in Beijing-Tianjin-Hebei region in China. Scientia Sinica Vitae, 43(8), 694–699.

    Article  Google Scholar 

  • Jim, C. Y., & Chen, W. Y. (2008). Assessing the ecosystem service of air pollutant removal by urban trees in Guangzhou (China). Journal of Environmental Management, 88(4), 665–676.

    Article  CAS  Google Scholar 

  • Li, K. W., Chen, L. H., Ying, F., White, S. J., Jang, C., Wu, X. C., et al. (2017). Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China. Atmospheric Research, 196, 40–52.

    Article  CAS  Google Scholar 

  • Liang, D., Ma, C., Wang, Y. Q., Wang, Y. J., & Zhao, C. X. (2016). Quantifying PM2.5 capture capability of greening trees based on leaf factors analyzing. Environmental Science and Pollution Research, 23(21), 21176–21186.

    Article  CAS  Google Scholar 

  • Liu, Z. R., Hu, B., Wang, L. L., Wu, F. K., Gao, W. K., & Wang, Y. S. (2015). Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing Analyses from a 9-year study. Environmental Science and Pollution Research, 22(1), 627–642.

    Article  CAS  Google Scholar 

  • Liu, H. M., Fang, C. L., Huang, J. J., Zhu, X. D., Zhou, Y., Wang, Z. B., et al. (2018a). The spatial-temporal characteristics and influencing factors of air pollution in Beijing-Tianjin-Hebei urban agglomeration. Acta Geographica Sinica, 73(1), 177–191.

    Google Scholar 

  • Liu, S. H., Hua, S. B., Wang, K., Qiu, P. P., Liu, H. J., Wu, B. B., et al. (2018b). Spatial-temporal variation characteristics of air pollution in Henan of China: Localized emission inventory, WRF/Chem simulations and potential source contribution analysis. Science of the Total Environment, 624, 396–406.

    Article  CAS  Google Scholar 

  • Ma, X. Y., Jia, H. L., Sha, T., An, J. L., & Tian, R. (2019). Spatial and seasonal characteristics of particulate matter and gaseous pollution in China Implications for control policy. Environmental Pollution, 248, 421–428.

    Article  CAS  Google Scholar 

  • Miao, W. J., Huang, X., & Song, Y. (2017). An economic assessment of the health effects and crop yield losses caused by air pollution in mainland China. Journal of Environmental Science, 56, 102–113.

    Article  Google Scholar 

  • Nguyen, T., Yu, X. X., Zhang, Z. M., Liu, M. M., & Liu, X. H. (2015). Relationship between types of urban forest and PM2.5 capture at three growth stages of leaves. Journal of Environmental Sciences, 27, 33–41.

    Article  Google Scholar 

  • Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics Distributional issues and an application. Geographical Analysis, 27, 286–306.

    Article  Google Scholar 

  • Pan, J. H., Zhang, W., Li, J. F., Wen, Y., & Wang, C. J. (2014a). Spatial distribution characteristics of air pollutants in major cities in China during the period of wide range haze pollution. Chinese Journal of Ecology, 33(12), 3423–3431.

    Google Scholar 

  • Pan, Y. P., Jia, L., Tian, S. L., Xie, Y. Z., Zhang, G. Z., Ma, H. Y., et al. (2014b). Potential effects of haze pollution on agriculture in China. Journal of Agro-Environment Science, 33(11), 2279–2280.

    Google Scholar 

  • Parchomenko, A., & Borsky, S. (2018). Identifying phosphorus hot spots A spatial analysis of the phosphorus balance as a result of manure application. Journal of Environmental Management, 214, 137–148.

    Article  CAS  Google Scholar 

  • Polichetti, G., Cocco, S., Spinali, A., Trimarco, V., & Nunziata, A. (2009). Effects of particulate matter (PM10 PM2.5 and PM1) on the cardiovascular system. Toxicology, 261(1–2), 1–8.

    Article  CAS  Google Scholar 

  • Ren, Y. J., Ma, S. L., Wang, S. W., Yu, S. J., Li, Y. D., Zhang, R. Q., et al. (2020). Ambient VOCs characteristics ozone formation potential and sources apportionment of air pollution in spring in Zhengzhou. Environmental Science, 41(6), 2577–2585.

    Google Scholar 

  • Simonich, S. L., & Hites, R. A. (1994). Importance of vegetation in removing polycyclic aromatic-hydrocarbons from the atmosphere. Nature, 370(6484), 49–51.

    Article  CAS  Google Scholar 

  • Streets, D. G., Yu, C., Bergin, M. H., Wang, X. M., & Carmichael, G. R. (2006). Modeling study of air pollution due to the manufacture of export goods in China’s Pearl River Delta. Environmental Science and Technology, 40(7), 2099–2107.

    Article  CAS  Google Scholar 

  • Sun, S., Li, L. J., Zhao, W. J., Qi, M. X., Tian, X., & Li, S. S. (2019a). Variation in pollutant concentrations and correlation analysis with the vegetation index in Beijing-Tianjin-Hebei. Environmental Science, 40(4), 1585–1593.

    Google Scholar 

  • Sun, S. Z., Stewart, J. D., Eliot, M. N., Yanosky, J. D., Liao, D. P., Tinker, L. F., et al. (2019b). Short-term exposure to air pollution and incidence of stroke in the Women’s Health Initiative. Environment International, 132, 1–7.

    Article  Google Scholar 

  • Tie, X. X., Wu, D., & Brasseur, G. (2009). Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou China. Atmospheric Environment, 43(14), 2375–2377.

    Article  CAS  Google Scholar 

  • Valverde, V., Pay, M. T., & Baldasano, J. M. (2016). A model-based analysis of SO2 and NO2 dynamics from coal-fired power plants under representative synoptic circulation types over the Iberian Peninsula. Science of the Total Environment, 541, 701–713.

    Article  CAS  Google Scholar 

  • Wahid, A., Maggs, R., Shamsi, S. R. A., Bell, J. N. B., & Ashmore, M. R. (1995). Air pollution and its impacts on wheat yield in the Pakistan Punjab. Environmental Pollution, 88(2), 147–154.

    Article  CAS  Google Scholar 

  • Wang, J., Hu, Z. M., Chen, Y. Y., Chen, Z. L., & Xu, S. Y. (2013). Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai China. Atmospheric Environment, 68, 221–229.

    Article  CAS  Google Scholar 

  • Wang, M. Y., Cao, C. X., Li, G. S., & Singh, R. P. (2015). Analysis of a severe prolonged regional haze episode in the Yangtze River Delta China. Atmospheric Environment, 102, 112–121.

    Article  CAS  Google Scholar 

  • Wang, Y. L., Li, J., Li, A., Xie, P. H., Zheng, H. T., Zhang, Y. Q., et al. (2016). Modeling study of surface PM2.5 and its source apportionment over Henan in 2013–2014. Acta Scientiae Circumstantiae, 36(10), 3543–3553.

    CAS  Google Scholar 

  • Wang, J. Q., Qu, W. J., Li, C., Zhao, C. H., & Zhong, X. (2018). Spatial distribution of wintertime air pollution in major cities over eastern China Relationship with the evolution of trough ridge and synoptic system over East Asia. Atmospheric Research, 212, 186–201.

    Article  CAS  Google Scholar 

  • Wang, Z. X., Wei, W., & Zheng, F. Y. (2020a). Effects of industrial air pollution on the technical efficiency of agricultural production Evidence from China. Environmental Impact Assessment Review, 83, 1–10.

    Article  CAS  Google Scholar 

  • Wang, Z. B., Li, J. X., & Liang, L. W. (2020b). Spatio-temporal evolution of ozone pollution and its influencing factors in the Beijing-Tianjin-Hebei urban agglomeration. Environmental Pollution, 256, 1–11.

    Article  Google Scholar 

  • WHO. (2016). The 138th session of the Executive Board opens, Draft road map for an enhanced global response to the adverse health effects of air pollution. https://www.who.int/news/item/25-01-2016-the-138th-session-of-the-executive-board-opens

  • Xie, Y. Y., Zhao, B., Zhang, L., & Luo, R. (2015). Spatiotemporal variations of PM2.5 and PM10 concentrations between 31 Chinese cities and their relationships with SO2, NO2, CO and O3. Particuology, 20, 141–149.

    Article  CAS  Google Scholar 

  • Xu, X. L. (2018a). (NDVI) spatial distribution data set of annual vegetation index in China. Data Registration and Publishing system of Resource and Environmental Science data Center, Chinese Academy of Sciences. http://www.resdc.cn/10.12078/2018060601

  • Xu, X. L. (2018b). (NDVI) spatial distribution data set of monthly vegetation index in China. Data Registration and Publishing system of Resource and Environmental Science data Center, Chinese Academy of Sciences. http://www.resdc.cn/10.12078/2018060602

  • Yi, F. J., Jiang, F., Zhong, F. N., Zhou, X., & Ding, A. J. (2016). The impacts of surface ozone pollution on winter wheat productivity in China An econometric approach. Environmental Pollution, 208, 326–335.

    Article  CAS  Google Scholar 

  • Zhan, D. S., Kwan, M. P., Zhang, W. Z., Yu, X. F., Meng, B., & Liu, Q. Q. (2018). The driving factors of air quality index in China. Journal of Cleaner Production, 197, 1342–1351.

    Article  CAS  Google Scholar 

  • Zhang, A., Qi, Q. W., Jiang, L. L., Zhou, F., & Wang, J. F. (2013). Population exposure to PM2.5 in the urban area of Beijing. Plos one, 8(5), 1–9.

    CAS  Google Scholar 

  • Zhang, Y. X., An, J. L., Wang, J. X., Shi, Y. Z., Liu, J. D., & Liang, J. S. (2018). Source analysis of volatile organic compounds in the Nanjing industrial area and evaluation of their contribution to ozone. Environmental Science, 39(2), 502–510.

    Google Scholar 

  • Zhang, H. H., Dong, H. T., Ren, M., Liang, Q. H., Shen, X. T., Wang, Q., et al. (2020). Ambient air pollution exposure and gestational diabetes mellitus in Guangzhou China A prospective cohort study. Science of the Total Environment, 699, 1–10.

    Article  Google Scholar 

  • Zhao, Y., Nielsen, C. P., McElroy, M. B., Zhang, L., & Zhang, J. (2012). CO emissions in China Uncertainties and implications of improved energy efficiency and emission control. Atmospheric Environment, 49, 103–113.

    Article  CAS  Google Scholar 

  • Zhao, P. G., Tuygun, G. T., Li, B. L., Liu, J., Yuan, L., Luo, Y., et al. (2019). The effect of environmental regulations on air quality A long-term trend analysis of SO2 and NO2 in the largest urban agglomeration in southwest China. Atmospheric Pollution Research, 10(6), 2030–2039.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Science (XDA19040303).

Funding

the Strategic Priority Research Program of the Chinese Academy of Science,XDA19040303,Yonghua Li

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghua Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, Z., Li, Y. & Zhang, F. Spatiotemporal Distribution of Atmospheric Pollutants and Its Relationship with Vegetation Index in the Major Grain-Producing Areas of China. Water Air Soil Pollut 233, 92 (2022). https://doi.org/10.1007/s11270-022-05563-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05563-3

Keywords

Navigation