Skip to main content
Log in

Assessment of Acid Sulfate Drainage in an Environmental Liability Associated with an Ancient Sulfuric Acid Industry in a Sector of the Río de la Plata Coastal Plain: Impacts On Soil And Water Quality

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Environmental liabilities have become one of the most important problems at environmental level, especially those located in urban areas. Within the area of the Río de la Plata coastal plain, industrial waste abandoned by an ancient sulfuric acid industry in a sector of the petrochemical center constitutes an environmental liability composed mainly of fragments of native sulfur. The aim of this work is to evaluate, from laboratory tests, the generation of sulfate acid drainage in environmental liabilities associated with the ancient sulfuric acid industry in order to identify the waste spatial distribution and to determine the impacts that they impart on the quality of the soil and groundwater. The results obtained show that the native sulfur scattered in the environmental liability associated with the ancient sulfuric acid industry constitutes a potential source of sulfated acid drainage that locally affects the soil, groundwater, and underground structures of the industrial center, and also small adjacent ecosystems. The interaction between native sulfur and the rainwater causes the oxidation of the native sulfur releasing protons and sulfates, which reach the groundwater through the infiltration water process, generating the acidification of the environment. The results provide useful draft for the management of environmental liabilities, and also the monitoring data obtained could assist in prioritization of remediation options, which constitute a problem of relevance and whose regulations for management and mitigation are still a controversial issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ainchil, J., & Kruse, E. (2002). Características hidrogeológicas de la Planicie Costera en el Noreste de La Plata, Buenos Aires, Argentina. Groundwater and Human Development. Mar del Plata (Argentina), 606–612.

  • APHA. (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). Washington D.C.: American Public Health Association.

    Google Scholar 

  • Bigham, J. M., & Nordstrom, D. K. (2000). Iron and aluminum hydroxysulfates from acid sulfate waters. Reviews in Mineralogy and Geochemistry, 40(1), 351–403.

    Article  CAS  Google Scholar 

  • van Breemen, N. (1973). Soil forming processes in acid sulphate soils. Proceedings of the International Symposium in Acid Sulphate Soils. 13–20 August 1972, Wageningen, The Netherlands (pp. 66–129). Wageningen, The Netherlands: Int. Inst. for Land Reclamation and Improvement.

    Google Scholar 

  • Campbell, F. T., Pfefferkorn, R., & Rounsaville, J. F. (1993). Sulfuric acid and sulfur trioxide, Ullman’s Encyclopedia of Industrial Chemistry (5a. edicion ed.pp. 635–699). Deerfield Beach, Florida, USA: Weinheim- VCH.

    Google Scholar 

  • Carol, E. S., Kruse, E. E., Laurencena, P. C., Rojo, A., & Deluchi, M. H. (2012). Ionic exchange in groundwater hydrochemical evolution. Study case: the drainage basin of El Pescado creek (Buenos Aires province, Argentina). Environmental Earth Sciences, 65(2), 421–428.

    Article  CAS  Google Scholar 

  • Carol, E., del Pilar Alvarez, M., Idaszkin, Y. L., & Santucci, L. (2019). Salinization and plant zonation in Argentinian salt marshes: Natural vs. anthropic factors. Journal of Marine Systems, 193, 74–83.

    Article  Google Scholar 

  • Corfield, J. (2000). The effects of acid sulphate run-off on a subtidal estuarine macrobenthiccommunity in the Richmond River, NSW, Australia. ICES (Int. Counc. Explor. Sea). Journal of Marine Science, 57(5), 1517–1523.

    Google Scholar 

  • Costa, M. C., & Duarte, J. C. (2005). Bioremediation of acid mine drainage using acidic soil and organic wastes for promoting sulphate-reducing bacteria activity on a column reactor. Water, Air, and Soil Pollution, 165(1-4), 325–345.

    Article  CAS  Google Scholar 

  • Costa, M. C., Martins, M., Jesus, C., & Duarte, J. C. (2008). Treatment of acid mine drainage by sulphate-reducing bacteria using low cost matrices. Water, Air, and Soil Pollution, 189(1), 149–162.

    Article  CAS  Google Scholar 

  • Costanza, R., Kemp, W. M., & Boynton, W. R. (1993). Predictability, scale and biodiversity in coastal and estuarine ecosystems: implications for management. Ambio, 22, 88–96.

    Google Scholar 

  • Crockford, R. H., & Willett, I. R. (1995). Drying and oxidation effects on the magnetic properties of sulfidic material during oxidation. Soil Research, 33(1), 19–29.

    Article  CAS  Google Scholar 

  • De Sousa, C. (2001). Contaminated sites: the Canadian situation in an international context. Journal of Environmental Management, 62(2), 131e154.

    Article  Google Scholar 

  • Delgado, J., Barba-Brioso, C., Ayala, D., Boski, T., Torres, S., Calderón, E., & López, F. (2019). Remediation experiment of Ecuadorian acid mine drainage: geochemical models of dissolved species and secondary minerals saturation. Environmental Science and Pollution Research, 26(34), 34854–34872.

    Article  CAS  Google Scholar 

  • Dent, D. L. (1986). Acid sulphate soils: a baseline for research and development. ILRI Publ. 39, Wageningen.

  • Devasahayam, S. (2006). Chemistry of acid production in black coal mine washery wastes. International Journal of Mineral Processing, 79(1), 1–8.

    Article  CAS  Google Scholar 

  • Diao, M., Huisman, J., & Muyzer, G. (2018). Spatio-temporal dynamics of sulfur bacteria during oxic--anoxic regime shifts in a seasonally stratified lake. FEMS Microbiology Ecology, 94(4), fiy040.

    Article  Google Scholar 

  • Ferreira, R. A., Pereira, M. F., Magalhães, J. P., Maurício, A. M., Caçador, I., & Martins-Dias, S. (2020). Assessing local acid mine drainage impacts on natural regeneration-revegetation of São Domingos mine (Portugal) using a mineralogical, biochemical and textural approach. Science of the Total Environment, 142825.

  • Frigaard, N. U., & Dahl, C. (2008). Sulfur metabolism in phototrophic sulfur bacteria. Advances in Microbial Physiology, 54, 103–200.

    Article  Google Scholar 

  • García, M. A., Chimenos, J. M., Fernández, A. I., Miralles, L., Segarra, M., & Espiell, F. (2004). Low-grade MgO used to stabilize heavy metals in highly contaminated soils. Chemosphere, 56(5), 481e491.

    Article  Google Scholar 

  • Gerritse, R. G., Barber, C., & Adeney, J. A. (1990). The impact of residential urban areas on groundwater quality: Swan Coastal Plain, Western Australia (Vol. 3).

    Google Scholar 

  • Idaszkin, Y. L., Carol, E., & Alvarez, M. (2017). Mechanism of removal and retention of heavy metals from the acid mine drainage to coastal wetland in the Patagonian marsh. Chemosphere, 183, 361–370.

    Article  CAS  Google Scholar 

  • Jennings, S. R., Dollhopf, D. J., & Inskeep, W. P. (2000). Acid production from sulfide minerals using hydrogen peroxide weathering. Applied Geochemistry, 15(2), 235–243.

    Article  CAS  Google Scholar 

  • Konner, Z. S. (1993). Comparative study of adsorption behaviour of copper, lead, and zinc onto goethite in aqueous system. Environmental Geology, 21, 242–250.

    Article  Google Scholar 

  • Konsten, C. J. M., Brinkman, R., & Andriesse, W. (1988). A field laboratory method to determine total potential and actual acidity in acid sulphate soils. In Selected papers of the Dakar symposium on acid sulphate soils: Dakar, Senegal, January 1986 (pp. 106–134).

    Google Scholar 

  • Lecomte, K. L., Maza, S. N., Collo, G., Sarmiento, A. M., & Depetris, P. J. (2017). Geochemical behavior of an acid drainage system: the case of the Amarillo River, Famatina (La Rioja, Argentina). Environmental Science and Pollution Research, 24(2), 1630–1647.

    Article  CAS  Google Scholar 

  • Lin, Z. (1997). Mineralogical and chemical characterization of wastes from the sulfuric acid industry in Falun, Sweden. Environmental Geology, 30(3-4), 152–162.

    Article  CAS  Google Scholar 

  • Lin, Z., & Quvarfort, U. (1996). Predicting the mobility of Zn, Fe, Cu, Pb, Cd from roasted sulfide (pyrite) residues—a case study of wastes from the sulfuric acid industry in Sweden. Waste Management, 16(8), 671–681.

    Article  CAS  Google Scholar 

  • Ljung, K., Maley, F., Cook, A., & Weinstein, P. (2009). Acid sulphate soils and human health-A millenium ecosystem assessment. Environment International, 35(8), 1234–1242.

    Article  CAS  Google Scholar 

  • Logan, W., & Nicholson, R. (1998). Origin of dissolved groundwater sulphate in coastal plain sediments of the Rio de la Plata, Eastern Argentina. Aquatic-Geochemistry, 3, 305–328.

    Article  Google Scholar 

  • Logan, W. S., Auge, M. P., & Panarello, H. O. (1999). Bicarbonate, sulfate, and chloride water in a shallow, clastic-dominated coastal flow system, Argentina. Groundwater, 37, 287–295.

    Article  CAS  Google Scholar 

  • Lövgren, L., Sjöberg, S., & Schindler, P. W. (1990). Acid/base reactions and Al (III) complexation at the surface of goethite. Geochimica et Cosmochimica Acta, 54(5), 1301–1306.

    Article  Google Scholar 

  • Ludwig, B., Prenzel, J., & Obermann, P. (2001). Modelling ion composition in seepage water from a column experiment with an open cut coal mine sediment. Journal of Geochemical Exploration, 73(2), 87–95.

    Article  CAS  Google Scholar 

  • Meire, P., Ysebaert, T., Van Damme, S., Van den Bergh, E., Maris, T., & Struyf, E. (2005). The Scheldt estuary: a description of a changing ecosystem. Hydrobiologia, 540, 1–11.

    Article  CAS  Google Scholar 

  • Müller, H. (1994). Sulfuric acid and sulfur trioxide. Ullmann's Encyclopedia of Industrial Chemistry, 35, 141–211.

    Google Scholar 

  • NF ISO 10390. (1994). Soil quality - determination of pH. Geneva, Switzerland: International Organization for standardization 5p.

    Google Scholar 

  • Nieto, J. M., Sarmiento, A. M., Canovas, C. R., Olias, M., & Ayora, C. (2013). Acid mine drainage in the Iberian Pyrite Belt: 1. Hydrochemical characteristics and pollutant load of the Tinto and Odiel rivers. Environmental Science and Pollution Research, 20(11), 7509–7519.

    Article  CAS  Google Scholar 

  • Nieva, N. E., Borgnino, L., Locati, F., & García, M. G. (2016). Mineralogical control on arsenic release during sediment–water interaction in abandoned mine wastes from the Argentina Puna. Science of the Total Environment, 550, 1141–1151.

    Article  CAS  Google Scholar 

  • Nieva, N. E., Borgnino, L., & García, M. G. (2018). Long term metal release and acid generation in abandoned mine wastes containing metal-sulphides. Environmental Pollution, 242, 264–276.

    Article  CAS  Google Scholar 

  • Nordstrom, D. (1982). Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. Acid Sulfate Weathering, 10, 37–56.

    CAS  Google Scholar 

  • Pons, L. J. (1973). Outline of the genesis, characteristics, classification and improvement of acid sulphate soils. In Proceedings of the 1972 (Wageningen, Netherlands) International Acid Sulphate Soils Symposium (Vol. 1, pp. 3–27).

    Google Scholar 

  • Pradhan, B. (2014). Corrosion behavior of steel reinforcement in concrete exposed to composite chloride–sulfate environment. Construction and Building Materials, 72, 398–410.

    Article  Google Scholar 

  • QGIS.org. (2020). QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project (http://www.qgis.org/es/site/).

  • Rennenberg, H. (1984). The fate of excess sulfur in higher plants. Annual Review of Plant Physiology, 35(1), 121–153.

    Article  CAS  Google Scholar 

  • Rezaie, B., & Anderson, A. (2020). Sustainable resolutions for environmental threat of the acid mine drainage. Science of the Total Environment, 717, 137211.

    Article  CAS  Google Scholar 

  • Santucci, L. (2020). Dinámica de la relación agua superficial - agua subterránea como condicionante de los procesos geoquímicos que regulan la calidad del agua. Tesis doctoral. Universidad Nacional de La Plata.

  • Santucci, L., Carol, E., & Kruse, E. (2016). Identification of palaeo-seawater intrusion in groundwater using minor ions in a semi-confined aquifer of the Río de la Plata littoral (Argentina). Science of the Total Environment, 566, 1640–1648.

    Article  Google Scholar 

  • Santucci, L., Carol, E., Borzi, G., & García, M. G. (2017). Hydrogeochemical and isotopic signature of surface and groundwater in a highly industrialized sector of the Rio de la Plata coastal plain (Argentina). Marine Pollution Bulletin, 120(1-2), 387–395.

    Article  CAS  Google Scholar 

  • Santucci, L., Carol, E., & Tanjal, C. (2018). Industrial waste as a source of surface and groundwater pollution for more than half a century in a sector of the Río de la Plata coastal plain (Argentina). Chemosphere, 206, 727–735.

    Article  CAS  Google Scholar 

  • Schmidt, A., & Jäger, K. (1992). Open questions about sulfur metabolism in plants. Annual Review of Plant Biology, 43(1), 325–349.

    Article  CAS  Google Scholar 

  • Schnack, E., Isla, F., De Francesco, F., Fucks, E. (2005). Estratigrafía del Cuaternario marino tardío en la provincia de Buenos Aires. XVI Congreso Geológico Argentino, Relatorio 159–182, La Plata.

  • Schwertmann, U., & Fitzpatrick, R. W. (1993). Iron minerals in surface environments. Catena Supplement, 21, 7–7.

    Google Scholar 

  • Shaheen, F., & Pradhan, B. (2017). Influence of sulfate ion and associated cation type on steel reinforcement corrosion in concrete powder aqueous solution in the presence of chloride ions. Cement and Concrete Research, 91, 73–86.

    Article  CAS  Google Scholar 

  • Sweerts, J. P. R., De Beer, D., Nielsen, L. P., Verdouw, H., Van den Heuvel, J. C., Cohen, Y., & Cappenberg, T. E. (1990). Denitrification by sulphur oxidizing Beggiatoa spp. mats on freshwater sediments. Nature, 344(6268), 762–763.

    Article  CAS  Google Scholar 

  • Tugrul, N., Derun, E. M., Piskin, M., & Piskin, S. (2003). Evaluation of pyrite ash wastes obtained by the sulfuric acid production industry. In Proceedings of the 8th International Conference on Environmental Science and Technology, Lemmos Island, Vol. A, Greece (pp. 918–925).

    Google Scholar 

  • Turner, L. J., & Kramer, J. R. (1992). Irreversibility of sulfate sorption on goethite and hematite. Water, Air, and Soil Pollution, 63(1-2), 23–32.

    Article  CAS  Google Scholar 

  • Ward, N. J., Sullivan, L. A., & Bush, R. T. (2004a). Soil pH, oxygen availability and the rate of sulfide oxidation in acid sulfate soil materials: implications for environmental hazard assessment. Australian Journal of Soil Research, 42, 509–514.

    Article  CAS  Google Scholar 

  • Ward, N. J., Sullivan, L. A., Fyfe, D. M., Bush, R. T., & Ferguson, A. J. P. (2004b). The process of sulfide oxidation in some acid sulfate soil materials. Australian Journal of Soil Research, 42, 29–37.

    Google Scholar 

  • Watling, K. M., Ahern, C. R., & Hey, K. M. (2004). 1 Acid sulfate soil field pH tests. Acid Sulfate Soils Laboratory Methods Guidelines (pp. H1-1–H1-4). Queensland, Australia: Queensland Department of Natural Resources, Mines and Energy, Indooroopilly.

    Google Scholar 

  • Yang, C., Chen, Y., Li, C., Chang, X., & Wu, Y. (2009). Trace element transformations and partitioning during the roasting of pyrite ores in the sulfuric acid industry. Journal of Hazardous Materials, 167(1-3), 835–845.

    Article  CAS  Google Scholar 

  • Zhou, C., Zhu, Z., Wang, Z., & Qiu, H. (2018). Deterioration of concrete fracture toughness and elastic modulus under simulated acid-sulfate environment. Construction and Building Materials, 176, 490–499.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L. Santucci acknowledges a postdoctoral fellowship and E. Carol is member of CIC in the Consejo Nacional de Investigaciones Científicas y Técnicas (National Council for Scientific and Technological Research).

Data and materials availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding

The authors received funding from Agencia Nacional de Promoción Científica y Tecnológica (National Agency for Scientific and Technological Promotion) and the Universidad Nacional de La Plata (National University of La Plata) of Argentina by means of their grants PICT 2016-0539 and N906 respectively.

Author information

Authors and Affiliations

Authors

Contributions

AG: field surveys and water and sediments sampling in the petrochemical center area, chemical analysis of water and sediments samples, investigation and writing the manuscript. SL: field surveys and water and sediments sampling in the petrochemical center area, chemical analysis of water and sediments samples. Interpretation of geochemical data, investigation and writing the manuscript. CE: field surveys and water and sediments sampling in the petrochemical center area. Interpretation of geochemical data, investigation, writing the manuscript and funding acquisition.

Corresponding author

Correspondence to Lucía Santucci.

Ethics declarations

Ethics approval

The submitted paper meets the ethical standards set by Environmental Science and Pollution Research.

Consent to participate

Not applicable.

Consent to publication

All authors agreed with the submission and approved the publication.

Code availability

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albiero, G., Santucci, L. & Carol, E. Assessment of Acid Sulfate Drainage in an Environmental Liability Associated with an Ancient Sulfuric Acid Industry in a Sector of the Río de la Plata Coastal Plain: Impacts On Soil And Water Quality. Water Air Soil Pollut 232, 150 (2021). https://doi.org/10.1007/s11270-021-05107-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05107-1

Keywords

Navigation