Skip to main content

Advertisement

Log in

Treatment of Acid Mine Drainage by Sulphate-reducing Bacteria Using Low Cost Matrices

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

This paper reports a laboratory-scale investigation concerning the use of sulphate-reducing bacteria (SRB) in a semi-continuous process, where column packed-bed type bioreactors were used for the treatment of acid mine drainage (AMD). The use of different materials as solid matrices was tested and the performance of the bioremediation processes was discussed in terms of sulphate and metals removal and acid neutralization. The behaviour of a reactor filled with acidic soil from a mining area and organic wastes was compared with other three reactors where coarse sand, glass spheres and cereal straw were used as packaging materials. Batch experiments showed the presence and growth of SRB from the acidic soil in different pH conditions and the effect of the absence or presence of several added carbon sources: lactate, ethanol and lactose. The data showed that it is possible to grow SRB using the acidic soil as source of inocula, in the absence and in the presence of the carbon sources tested, since the pH of the media was previously increased to values of 5 or higher. When acidic soil from the mining area and organic wastes were utilised as column matrices, it is possible to remove the metals and to neutralise the acidity of AMD, although an inefficient sulphate removal was observed. When coarse sand or glass spheres were utilised, efficient metals sulphate removal were achieved. However, the incapacity of both systems to generate enough alkalinity does not allow maintaining their good performances in terms of iron removal and sulphate reduction. As a result, the incorporation of materials with neutralizing and buffer capacity to the matrix is recommended. Due to its low density, cereal straw was not suitable to obtain an anaerobic environment inside the column for SRB activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Annachhatre, A. P., & Suktrakoolvait, S. (2001). Biological sulfate reducing using molasses as a carbon source. Water Environment Research, 73, 118–126.

    Article  CAS  Google Scholar 

  • APHA (1998). Standard Methods for the Examination of Water and Wastewater (20th ed.). Washington, DC: Amer. Public. Health Assoc.

  • Barber, W. P., & Stuckey, D. C. (2000). Effect of sulfate reduction on chemical oxygen demand removal in an anaerobic baffled reactor. Water Environment Research, 72, 593–601.

    Article  CAS  Google Scholar 

  • Barnes, L. J. (1998). Removal of heavy metals and sulphate from contaminated groundwater using sulphate-reducing bacteria: development of a commercial process. In S. K. Sikdar & R. L. Irvine (Eds.), Bioremediation Technologies (Vol. 3). Lancaster, USA: Technomic Publishing Company, Inc.

    Google Scholar 

  • Barnes, L. J., Janssen, F. J., Scheeren, P. J. H., Versteegh, J. H., & Koch, R. O. (1992). Simultaneous microbial removal of sulfate and heavy metals from waste water. Transactions of the Institution of Mining Metallurgy (Section C: Mineral Process. Extr. Metall.), 101, 181–187.

    Google Scholar 

  • Benner, S. G., Blowes, D. W., Gould, W. D., Herbert, R. B., Jr., & Ptacek, C. J. (1999). Geochemistry of a permeable reactive barrier for metals and acid mine drainage. Environmental Science and Technology, 33, 2793–2799.

    Article  CAS  Google Scholar 

  • Brown, D. E., Groves, G. R., & Miller, J. D. A. (1973). pH and Eh control of cultures of sulphate-reducing bacteria. Journal of Applied Chemistry and Biotechnology, 23, 141–149.

    CAS  Google Scholar 

  • Burgess, J. E., & Stuetz, R. M. (2002). Activated Sludge for the treatment of sulphur-rich wastewaters. Minerals Engineering, 14, 839–846.

    Article  Google Scholar 

  • Castro, J. M., Wielinga, B. W., Gannon, J. E., & Moore, J. N. (1999). Stimulation of a sulfate-reducing bacteria in lake water from a former open-pit mine through addition of organic wastes. Water Environment Research, 71, 218–223.

    Article  CAS  Google Scholar 

  • Cohen, R. H. (2006). Use of microbes for cost reduction of metal removal from metals and mining industry waste streams. Journal of Cleaner Production, 14, 1146–1157.

    Article  Google Scholar 

  • Costa, M. C., & Duarte, J. C. (2005). Bioremediation of acid mine drainage using acidic soil and organic wastes for promoting sulphate-reducing bacteria activity on a column reactor. Water, Air, and Soil Pollution, 165, 325–345.

    Article  CAS  Google Scholar 

  • De Vegt, A. L., Bayer, H. G., & Buisman, C. J. (1998). Biological sulfate removal and metal recovery from mine waters. Mining Engineering, 67–70. November.

  • Diels, L., van der Lelie, N., & Bastiaens, L. (2002). New developments in treatment of heavy metals contaminated soils. Reviews in Environmental Science and Biotechnology, 1, 75–82.

    Article  CAS  Google Scholar 

  • Drury, W. J. (1999). Treatment of acid mine drainage with anaerobic solid-substrate reactors. Water Environment Research, 71, 1244–1250.

    Article  CAS  Google Scholar 

  • El Bayoumy, M. A., Bewtra, J. K., Ali, H. I., & Biswas, N. (1999). Sulfide production by sulfate reducing bacteria with lactate as feed in an upflow anaerobic fixed film reactor. Water, Air and Soil Pollution, 112, 67–84.

    Article  Google Scholar 

  • Elliott, P., Ragusa, S., & Catcheside, S. (1998). Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage. Water Research, 32, 3724–3730.

    Article  CAS  Google Scholar 

  • Fauville, A., Mayer, B., Frömmichen, R., Friese, K., & Veizer, J. (2004). Chemical and isotopic evidence for accelerated bacterial sulphate reduction in acid mining lakes after addition of organic carbon: Laboratory batch experiments. Chemical Geology, 204, 325–344.

    Article  CAS  Google Scholar 

  • Foucher, S., Battaglia-Brunet, F., Ignatiadis, I., & Morin, D. (2000). Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery. Chemical Engineering Science, 56, 1639–1645.

    Article  Google Scholar 

  • Garcia, C., Moreno, D. A., Ballester, A., Bláquez, M. L., & González, F. (2001). Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria. Minerals Engineering, 14, 997–1008.

    Article  CAS  Google Scholar 

  • Gilbert, O., de Pablo, J., Cortina, J. L., & Ayora, C. (2002). Treatment of acid mine drainage by sulphate-reducing bacteria using permeable barriers: A review from laboratory to full-scale experiments. Reviews in Environmental Science and Biotechnology, 1, 327–333.

    Article  Google Scholar 

  • Gilbert, O., Pablo, J., Cortina, J. L., & Ayora, C. (2003). Evaluation of municipal compost/ limestone/iron mixtures as filling materials for permeable reactive barriers for in-situ acid mine drainage treatment. Journal of Chemical Technology and Biotechnology, 78, 489–496.

    Article  CAS  Google Scholar 

  • Gilbert, O., Pablo, J., Cortina, J. L., & Ayora, C. (2005). Municipal compost-based mixture for acid mine drainage bioremediation: Metal retention mechanisms. Applied Geochemistry, 20, 1648–1657.

    Article  CAS  Google Scholar 

  • Glombitza, F. (2000). Treatment of acid lignite mine flooding water by means of microbial sulphate-reduction. Waste Management, 21, 197–203.

    Article  Google Scholar 

  • Gyure, R. A., Konopka, A., Brooks, A., & Doemel, W. (1990). Microbial sulphate reduction in acidic (pH 3) strip mine lakes. FEMS Microbiology, Ecology, 73, 193–202.

    Article  CAS  Google Scholar 

  • Johnson, D. B., & Hallberg, K. B. (2005a). Acid mine drainage remediation options: a review. Science of the Total Environment, 338, 3–14.

    Article  CAS  Google Scholar 

  • Johnson, D. B., & Hallberg, K. B. (2005b). Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Science of the Total Environment, 338, 81–93.

    Article  CAS  Google Scholar 

  • Jørgensen, B. B. (1982). Mineralization of organic matter in the sea bed – The role of sulphate reduction. Nature, 296, 643–645.

    Article  Google Scholar 

  • Kolmert, A., & Johnson, D. B. (2001). Remediation of acidic waste waters using immobilized acidophilic sulfate-reducing bacteria. Journal of Chemical Technology and Biotechnology, 76, 836–843.

    Article  CAS  Google Scholar 

  • Lima, A. C. F., Gonçalves, M. M., Granato, M., & Leite, G. F. (2001). Anaerobic sulphate-reducing microbial process using UASB reactor for heavy metals decontamination. Environmental Technology, 22, 261–270.

    Article  Google Scholar 

  • Luptakova, A., Kusnierova, M., Bezovska, M., & Fecko, P. (2003, September). The selective precipitation of heavy metals by sulfate-reducing bacteria (Proceedings of the 15th International Biohydrometallurgy Symposium, IBS`03, Athens, Greece).

  • Lyew, D., & Sheppard, J. (1997). Effects of physical parameters of a gravel bed on activity of sulphate-reducing bacteria in the presence of acid mine drainage. Journal of Chemical Technology and Biotechnology, 28, 223–230.

    Article  Google Scholar 

  • Lyew, D., & Sheppard, J. (1999). Sizing consideration for gravel beds treating acid mine drainage by sulphate reduction. Journal of Environmental Quality, 28, 1025–1030.

    Article  CAS  Google Scholar 

  • Maree, J. P., Stobos, G., Greben, H., Gunter, P., Christy, A. D. M. (2001, September). Biological treatment of wine water using ethanol as an energy source. (Proceedings of the Conference on Environmentally Responsible Mining in South Africa, Uldersdrift).

  • McConchie, D. (2003). The management of sulphidic waste rock and tailings, and the treatment of acid mine rock drainage: new solutions for old problems. Communication presented for Virotec International & Terraplus, Ordem dos Engenheiros, Lisboa, Portugal, October.

  • Nagpal, S., Chuichulcherm, S., Livingstone, A., & Peeva, L. (2000). Ethanol utilization by sulfate-reducing bacteria: An experimental and modeling study. Biotechnology and Bioengineering, 16, 533–543.

    Article  Google Scholar 

  • Postgate, J. R. (1984). The sulphate-reducing bacteria, 2nd Edn. (Cambridge University Press).

  • Prasad, D., Wai, M., Bérubé, P., & Henry, J. G. (1999). Evaluating substrates in the biological treatment of acid mine drainage. Environmental Technology, 20, 449–458.

    CAS  Google Scholar 

  • Quental, L., Bourguignon, A., Sousa, A. J., Batista, M. J., Brito, M. G., Tavares, T., et al. (2003). MINEO Southern Europe environment test site, Contamination /impact mapping and modelling. Final report.

  • Quental, L., Vairinho, M., Abreu, M. M., Oliveira, V., Sousa, P., Brito, G., et al. (2001). Imagens hiperespectrais para avaliação e monitorização ambiental em áreas mineiras: Resultados preliminares do projecto MINEO na Mina de São Domingos, Alentejo. Congresso Internacional sobre Património Geológico e Mineiro Museu Geológico e Mineiro de Lisboa, Beja, Instituto Superior de Educação.

  • Santos Oliveira, J. M., Machado Leite, M. R., Canto Machado, M. J., & Pedrosa, M. Y. (2000). Auréolas de Dispersão Química Causadas pela Actividade Mineira. Estratégias e uma Metodologia Técnico-científica com Vista à sua Avaliação e Hierarquização. Boletim de Minas, 37. Retrieved from http://www.igm.pt/edicoes_online/boletim/vol37_3/artigo3.htm.

  • Sass, H., Cypionka, H., & Babenzien, H. D. (1997). Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin. FEMS Microbiology, Ecology, 22, 245–255.

    Article  CAS  Google Scholar 

  • Schindler, D. W. (1986). The significance of in-lake production of alkalinity. Water, Air and Soil Pollution, 30, 931–944.

    Article  CAS  Google Scholar 

  • Shokes, T. E., & Moller, G. (1999). Removal of dissolved heavy metals from acid rock drainage using iron metal. Environmental Science and Technology, 33, 282–287.

    Article  CAS  Google Scholar 

  • Steed, V. S., Suidan, M. T., Gupta, M., Miyahara, T., Acheson, C. M., & Sayles, G. D. (2000). Development of a sulfate-reducing biological process to remove heavy metals from acid mine drainage. Water Environment Research, 72, 530–535.

    Article  CAS  Google Scholar 

  • Tsukamoto, T. K., Killion, H. A., & Miller, G. C. (2004). Column experiments for microbiological treatment of acid mine drainage: low-temperature, low pH and matrix investigations. Water Research, 38, 1405–1418.

    Article  CAS  Google Scholar 

  • Tucker, M. D., Barton, L. L., & Thomson, B. M. (1998). Reduction of Cr, Mo, Se and U by desulfovivrio desulfuricans immobilized in polyacrylamide gels. Journal of Industrial Microbiology and Biotechnology, 20, 13–19.

    Article  CAS  Google Scholar 

  • Tuppurainen, K. O., Väisänen, A. O., & Rintala, J. A. (2002). Zinc removal, in anaerobic sulphate-reducing liquid substrate process. Minerals Engineering, 15, 847–852.

    Article  CAS  Google Scholar 

  • Tuttle, J. H., Dugan, P. R., Macmillan, C. B., & Randle, C. I. (1969). Microbial dissimilatory sulphur cycle in acid mine water. Journal of Bacteriology, 97, 594–602.

    CAS  Google Scholar 

  • Willow, M. A., & Cohen, R. H. (2003). pH, Dissolved oxygen, and adsorption effects on metal removal in anaerobic bioreactors. Journal of Environmental Quality, 32, 1212–1221.

    CAS  Google Scholar 

Download references

Acknowledgments

M. C. Costa wants to thank Dr. José Duarte and the Instituto Nacional de Energia, Tecnologia e Inovação (INETI) for receiving her on her sabbatical license.

The authors wish to express their gratitude to Fundação para a Ciência e a Tecnologia (FCT) for funding this research through Project ECOTEC (POCI/AMB/58512/2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, M.C., Martins, M., Jesus, C. et al. Treatment of Acid Mine Drainage by Sulphate-reducing Bacteria Using Low Cost Matrices. Water Air Soil Pollut 189, 149–162 (2008). https://doi.org/10.1007/s11270-007-9563-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9563-1

Keywords

Navigation