Skip to main content
Log in

Ionic exchange in groundwater hydrochemical evolution. Study case: the drainage basin of El Pescado creek (Buenos Aires province, Argentina)

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The phreatic aquifer beneath the Pampean plain, in eastern central Argentina, constitutes a relevant source of water supply in the area. The objective of this work was to assess the significance of the cation exchange processes in the hydrochemical evolution of this aquifer, based on a study case located in the middle and upper basin of the El Pescado creek. Results indicate that Ca2+/Na+ exchange is the main process determining the evolution of groundwater from the recharge areas (Ca–HCO3) towards the local discharge areas (Na–HCO3), as well as representing a source of Na+ contribution to the water in the aquifer. This hydrochemical characteristic is central to the identification of local discharge areas within a plain environment which extends regionally. The ion exchange capacity of these discharge areas has environmental importance, due to its influence on groundwater quality and potential groundwater uses. These results may be applied to any aquifer sharing similar hydrogeological characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Appelo C, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema Publishers, Great Britain

    Book  Google Scholar 

  • APHA (American Public Health Association) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, American Water Works Association. Water Environment Federation, Washington, DC

    Google Scholar 

  • Bonorino G, Albouy R, Carrica J (2001) Hidroquímica de un Acuífero Loéssico. Geoacta 26:33–45

    Google Scholar 

  • Coetsiers M, Walraevens K (2006) Chemical characterization of the Neogene Aquifer, Belgium. Hydrogeol J 14:1556–1568

    Article  Google Scholar 

  • Fantong WY, Satake H, Ayonghe SN, Aka FT, Asai K (2009) Hydrogeochemical controls and usability of groundwater in the semi-arid Mayo Tsanaga River Basin: far north province, Cameroon. Environ Geol 58:1281–1293

    Article  Google Scholar 

  • Gaofeng Z, Yonghong S, Chunlin H, Qi F, Zhiguang L (2009) Hydrogeochemical processes in the groundwater environment of Heihe River Basin, northwest China. Environ Earth Sci. doi:10.1007/s12665-009-0175-5

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water, 3rd edn. US Geological Survey Water-Supply Paper 2254

  • Kim K, Rajmohan N, Kim HJ, Hwang G, Cho MJ (2004) Assessment of groundwater chemistry in a coastal region (Kunsan, Korea) having complex contaminant sources: a stoichiometric approach. Environ Geol 46:763–774

    Article  Google Scholar 

  • Kruse E, Laurencena P, Deluchi M, Varela L, Albina L, Rosales E (2003) Relación hidroquímica superficial—subterránea en cuencas de llanura. Noreste de la Provincia de Buenos Aires. I Seminario Hispano—Latinoamericano sobre Temas Actuales de Hidrología Subterránea. Rosario. Universidad Nacional de Rosario. Memorias, pp 461–472

  • Laurencena P, Kruse E, Rojo A, Deluchi M, Carol E (2005) Variaciones de niveles freáticos en la cuenca del Arroyo El Pescado (Provincia de Buenos Aires). XVI Congreso Geológico Argentino. La Plata. Argentina. Tomo III, pp 725–730

  • Magaritz M, Luzier E (1985) Water-rock interactions and seawater-freshwater mixing effects in the coastal dunes aquifer, Coos Bay, Oregon. Geochim Cosmochim Acta 49:2515–2525

    Article  Google Scholar 

  • Martínez D, Bocanegra E (2002) Hydrogeochesmistry and cation-exchange processes in the coastal aquifer of Mar del Plata, Argentina. Hydrogeol J 10:393–408

    Article  Google Scholar 

  • McLean W, Jankowski J, Lavitt N (2000) Groundwater quality and sustainability in an alluvial aquifer, Australia. In: Sililo O et al (eds) Proceedings of the 30th congress of the International Association of Hydrogeologists, Cape Town, South Africa, Balkema, Rotterdam, pp 567–573

  • Morgan K, Jankowski J (2004) Saline groundwater seepage zones and their impact on soil and water resources in the Spicers Creek catchment, central west, New South Wales, Australia. Environ Geol 46:273–285

    Article  Google Scholar 

  • Nadler A, Magaritzb M, Mazor E (1980) Chemical reactions of seawater with rocks and freshwater: experimental and fiel observations on brackish water in Israel. Geochim Cosmochim Acta 44:879–886

    Article  Google Scholar 

  • Nagaraju A, Surresh S, Killam K, Hudson-Edwards K (2006) Hydrogeochemistry of waters of Mangampeta Barite Mining Area, Cuddapach Basin, Andhra Pradesh, India. Turk J Eng Environ Sci 30:203–219

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Surv, Water Resour Invest, Report 99–4259

  • Plummer LN, Prestemon EC, Parkhurst DL (1991) An interactive code (NETPATH) for modelling NET geochemical reactions along a flow PATH. US Geol Surv Water Resour Invest 4078

  • Quiroz Londoño OM, Martínez DE, Dapeña C, Massone H (2008) Hydrogeochemistry and isotope analyses used to determine groundwater recharge and flow in low-gradient catchments of the province of Buenos Aires, Argentina. Hydrogeol J 16:1113–1127

    Article  Google Scholar 

  • Rajmohan N, Al-Futaisi A, Al-Touqi S (2009) Geochemical process regulating groundwater quality in a coastal region with complex contamination sources: Barka, Sultanate of Oman. Environ Earth Sci 59:385–398

    Article  Google Scholar 

  • Sala JM, Auge M (1973) Presencia de capas filtrantes en el noreste de la Provincia de Buenos.Aires. Su determinación. Actas V Congreso Geológico Argentino Tomo V, pp 185–194

  • Teruggi M (1957) The nature and origin of the Argentine loess. J Sediment Petrol 27:322–332

    Google Scholar 

  • Thornthwaite CW, Mather JR (1955) The water balance, vol 8. N.J. Laboratory of Climatology, Publications in Climatology, Centerton, pp 1–104

  • Tijani MN (2004) Evolution of saline waters and brines in the Benue-Trough, Nigeria. Appl Geochem 19:1355–1365

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo E. Kruse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carol, E.S., Kruse, E.E., Laurencena, P.C. et al. Ionic exchange in groundwater hydrochemical evolution. Study case: the drainage basin of El Pescado creek (Buenos Aires province, Argentina). Environ Earth Sci 65, 421–428 (2012). https://doi.org/10.1007/s12665-011-1318-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1318-z

Keywords

Navigation