Skip to main content
Log in

An Efficient Catalytic Composite Material of Mesoporous Carbon Loaded Nano Zero-Valent Iron as an Activator for the Degradation of Sulfadiazine

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Sulfadiazine (SDZ) was effectively removed by the heterogeneous catalytic sulfate radical (SO4•−) oxidation using a novel composite material of mesoporous carbon (MC) loaded nano zero-valent iron (nZVI). Possessing larger specific area (433.3 m2 g−1) and high mesopores volume (2.537 cm3 g−1), the composite material (nZVI/MC) was used as the activator to activate persulfate for the degradation of SDZ. The results of degradation experiments indicated that the removal efficiency of SDZ in nZVI/MC+ persulfate (PS) process reached the highest, due to good dispersing property of MC for nZVI. The removal of SDZ was further enhanced by the increase of nZVI loading as well as the nZVI/MC composite content. Quenching experiments showed that SO4•− acted a crucial role in the degradation process of SDZ. Both the FT-IR and XPS analyses showed that the FeO contents decreased after degradation reaction, which indicated the occurrence of active oxidation reaction between SO4•− and Fe2+ from the breakage of the Fe–O bond. The LC-MS analysis indicated that the cleavages of C–N bond in the heterocyclic ring and N–S bond were the major degradation pathway of SDZ, attributing to the attack of SO4•− and •OH. These results demonstrated that the novel nZVI/MC composite with excellent stability could be used for the effective degradation of SDZ through activating PS to produce SO4•−.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acosta-Rangel, A., Sánchez-Polo, M., Polo, A. M. S., Rivera-Utrilla, J., & Berber-Mendoza, M. S. (2018). Sulfonamides degradation assisted by UV, UV/H2O2 and UV/K2S2O8: efficiency, mechanism and byproducts cytotoxicity. Journal of Environmental Management, 225, 224–231.

    CAS  Google Scholar 

  • Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., Johir, M. A. H., & Sornalingam, K. (2017). Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water. Chemical Engineering Journal, 311, 348–358.

    CAS  Google Scholar 

  • Al-Shamsi, M. A., & Thomson, N. R. (2013). Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron. Journal of Industrial and Engineering Chemistry, 52(38), 13564–13571.

    CAS  Google Scholar 

  • De Luca, A., He, X. X., Dionysiou, D. D., Dantas, R. F., & Esplugas, S. (2017). Effects of bromide on the degradation of organic contaminants with UV and Fe2+ activated persulfate. Chemical Engineering Journal, 318, 206–213.

    Google Scholar 

  • Domínguez, J. R., González, T., Palo, P., & Uerda-Correa, C. E. M. (2011). Removal of common pharmaceuticals present in surface waters by amberlite XAD-7 acrylic-ester-resin: influence of pH and presence of other drugs. Desalination, 269, 231–238.

    Google Scholar 

  • Dong, H. R., Deng, J. M., Xie, Y. K., Zhang, C., Jiang, Z., Cheng, Y. J., Hou, K. J., & Zeng, G. M. (2017). Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr (VI) removal from aqueous solution. Journal of Hazardous Materials, 322, 79–86.

    Google Scholar 

  • Fang, G., Gao, J., Liu, C., Dionysiou, D. D., Wang, Y., & Zhou, D. (2014). Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation. Environmental Science & Technology, 48, 1902–1910.

    CAS  Google Scholar 

  • Gan, Y. Y., Zhang, Q. Q., Chen, Y. J., Zhao, Y. M., Xiong, Z. C., & Zhang, L. Y. (2016). Selective extraction of endogenous peptides from human serum with magnetic mesoporous carbon composites. Talanta, 161, 647–654.

    CAS  Google Scholar 

  • Gao, H. C., Xiao, F., Ching, C. B., & Duan, H. W. (2011). One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection. ACS Applied Materials & Interfaces, 3, 3049–3057.

    CAS  Google Scholar 

  • Ghanbari, F., Moradi, M., & Gohari, F. (2016). Degradation of 2,4,6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals. Journal of Water Process Engineering, 9, 22–28.

    Google Scholar 

  • Ghauch, A., Tuqan, A. M., & Kibbi, N. (2012). Ibuprofen removal by heated persulfate in aqueous solution: a kinetics study. Chemical Engineering Journal, 197, 483–492.

    CAS  Google Scholar 

  • Gu, M. B., Farooq, U., Lu, S. G., Zhang, X., Qiu, Z. F., & Sui, Q. (2018a). Degradation of trichloroethylene in aqueous solution by rGO supported nZVI catalyst under several oxic environments. Journal of Hazardous Materials, 349, 35–44.

    CAS  Google Scholar 

  • Gu, M. B., Sui, Q., Farooq, U., Zhang, X., Qiu, Z. F., & Lyu, S. G. (2018b). Degradation of phenanthrene in sulfate radical based oxidative environment by nZVI-PDA functionalized rGO catalyst. Chemical Engineering Journal, 354, 541–552.

    CAS  Google Scholar 

  • Hsieh, W. P., Pan, J. R., Huang, C. P., Su, Y. C., & Juang, Y. J. (2010). Enhance the photocatalytic activity for the degradation of organic contaminants in water by incorporating TiO2 with zero-valent iron. Science of the Total Environment, 408, 672–679.

    CAS  Google Scholar 

  • Hu, P. D., & Long, M. C. (2016). Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications. Applied Catalysis B: Environmental, 181, 103–117.

    CAS  Google Scholar 

  • Hu, S. Q., Zhang, Y., Shen, G. X., Zhang, H. C., Yuan, Z. J., & Zhang, W. (2019a). Adsorption/desorption behavior and mechanisms of sulfadiazine and sulfamethoxazole in agricultural soil systems. Soil & Tillage Research, 186, 233–241.

    Google Scholar 

  • Hu, X., Jia, L. J., Cheng, J., & Sun, Z. R. (2019b). Magnetic ordered mesoporous carbon materials for adsorption of minocycline from aqueous solution: preparation, characterization and adsorption mechanism. Journal of Hazardous Materials, 362, 1–8.

    CAS  Google Scholar 

  • Hussain, I., Li, M. Y., Zhang, Y. Q., Li, Y. C., Huang, S. B., Du, X. D., Liu, G. Q., Hayat, W., & Anwar, N. (2017). Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol. Chemical Engineering Journal, 311, 163–172.

    CAS  Google Scholar 

  • Hussain, I., Zhang, Y. Q., Huang, S. B., & Du, X. Z. (2012). Degradation of p-chloroaniline by persulfate activated with zero-valent iron. Chemical Engineering Journal, 203, 269–276.

    CAS  Google Scholar 

  • Ji, Y., Shi, Y., Wang, L., Lu, J., Ferronato, C., & Chovelon, J. M. (2017). Sulfate radical-based oxidation of antibiotics sulfamethazine, sulfapyridine, sulfadiazine, sulfadimethoxine, and sulfachloropyridazine: formation of SO2 extrusion products and effects of natural organic matter. Science of the Total Environment, 593, 704–712.

    Google Scholar 

  • Jiang, T., Wang, Y., Wang, K., Liang, Y., Wu, D., Tsiakaras, P., & Song, S. (2016). A novel sulfur-nitrogen dual doped ordered mesoporous carbon electrocatalyst for efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 189, 1–11.

    CAS  Google Scholar 

  • Jiang, X., Guo, Y. H., Zhang, L. B., Jiang, W. J., & Xie, R. Z. (2018). Catalytic degradation of tetracycline hydrochloride by persulfate activated with nano Fe0 immobilized mesoporous carbon. Chemical Engineering Journal, 341, 392–401.

    CAS  Google Scholar 

  • Jin, J., Nishiyama, N., Egashira, Y., & Ueyama, K. (2009). Pore structure and pore size controls of ordered mesoporous carbons prepared from resorcinol/formaldehyde/triblock polymers. Microporous and Mesoporous Materials, 118, 218–223.

    CAS  Google Scholar 

  • Lin, C. C., & Chen, Y. H. (2018). Feasibility of using nanoscale zero-valent iron and persulfate to degrade sulfamethazine in aqueous solutions. Separation and Purification Technology, 194(3), 388–395.

    CAS  Google Scholar 

  • Liu, H. X., Yao, J. Y., Wang, L. H., Wang, X. H., Qu, R. J., & Wang, Z. Y. (2019). Effective degradation of fenitrothion by zero-valent iron powder (Fe0) activated persulfate in aqueous solution: kinetic study and product identification. Chemical Engineering Journal, 358, 1479–1488.

    CAS  Google Scholar 

  • Liu, X. H., Liu, Y., Lu, S. Y., Guo, W., & Xi, B. D. (2018). Performance and mechanism into TiO2/zeolite composites for sulfadiazine adsorption and photodegradation. Chemical Engineering Journal, 350, 131–147.

    CAS  Google Scholar 

  • Ma, J., Li, H. Y., Chi, L. P., Chen, H. K., & Chen, C. Z. (2017). Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature. Chemosphere, 189, 86–93.

    CAS  Google Scholar 

  • Mandal, S., Pu, S. Y., Wang, X. K., Ma, H., & Bai, Y. C. (2020). Hierarchical porous structured polysulfide supported nZVI/biochar and efficient immobilization of selenium in the soil. Science of the Total Environment, 708, 134831.

    CAS  Google Scholar 

  • Michael, I., Rizzo, L., Mcardell, C. S., Manaia, C. M., Merlin, C., Schwartz, T., Dagot, C., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Research, 47, 957–995.

    CAS  Google Scholar 

  • Oh, S. Y., Kang, S. G., & Chiu, P. C. (2010). Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron. Science of the Total Environment, 408, 3464–3468.

    CAS  Google Scholar 

  • Ozcan, A. S., Erdem, B., & Ozcan, A. (2004). Adsorption of acid blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite. Journal of Colloid and Interface Science, 280(1), 44–54.

    Google Scholar 

  • Park, J. A., Jung, S. M., Yi, I. G., Choi, J. W., Kim, S. B., & Lee, S. H. (2017). Adsorption of microcystin-LR on mesoporous carbons and its potential use in drinking water source. Chemosphere, 177, 15–23.

    CAS  Google Scholar 

  • Peng, J., Wu, E. H., Wang, N. N., Quan, X. X., Sun, M. Z., & Hu, Q. (2019). Removal of sulfonamide antibiotics from water by adsorption and persulfate oxidation process. Journal of Molecular Liquids, 274, 632–638.

    CAS  Google Scholar 

  • Shi, J. M., Wang, J., Wang, W., Teng, W., & Zhang, W. Z. (2019). Stabilization of nanoscale zero-valent iron in water with mesoporous carbon (nZVI@MC). Journal of Environmental Sciences, 81, 28–33.

    Google Scholar 

  • Sun, J. C., Wang, Q. Y., Zhang, J., Wang, Z. W., & Wu, Z. C. (2018). Degradation of sulfadiazine in drinking water by a cathodic electrochemical membrane filtration process. Electrochimica Acta, 277, 77–87.

    CAS  Google Scholar 

  • Takdastan, A., Kakavandi, B., Azizi, M., & Golshan, M. (2018). Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/US system: a new approach into catalytic degradation of bisphenol a. Chemical Engineering Journal, 331, 729–743.

    CAS  Google Scholar 

  • Tanaka, S., Doi, A., Matsui, T., & Miyake, Y. (2013). Mass transport and electrolyte accessibility through hexagonally ordered channels of self-assembled mesoporous carbons. Journal of Power Sources, 228, 24–31.

    CAS  Google Scholar 

  • Tang, J. T., & Wang, J. L. (2018). Fenton-like degradation of sulfamethoxazole using Fe-based magnetic nanoparticles embedded into mesoporous carbon hybrid as an efficient catalyst. Chemical Engineering Journal, 351, 1085–1094.

    CAS  Google Scholar 

  • Tang, L., Liu, Y. N., Wang, J. J., Zeng, G. M., Deng, Y. C., Dong, H. R., Feng, H. P., Wang, J. J., & Peng, B. (2018). Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: electron transfer mechanism. Applied Catalysis B: Environmental, 231, 1–10.

    CAS  Google Scholar 

  • Wang, X., Wang, L. G., Li, J. B., Qiu, J. J., Cai, C., & Zhang, H. (2014). Degradation of acid Orange 7 by persulfate activated with zero valent iron in the presence of ultrasonic irradiation. Separation and Purification Technology, 122, 41–46.

    CAS  Google Scholar 

  • Wang, Y. X., Sun, H. Q., Duan, X. G., Ang, H. M., Tade, M. O., & Wang, S. B. (2015). A new magnetic nano zero-valent iron encapsulated in carbon spheres for oxidative degradation of phenol. Applied Catalysis B: Environmental, 172-173, 73–81.

    CAS  Google Scholar 

  • Wang, Z. Y., Shao, Y. S., Gao, N. Y., & An, N. (2018a). Degradation kinetic of dibutyl phthalate (DBP) by sulfate radical and hydroxyl radical-based advanced oxidation process in UV/persulfate system. Separation and Purification Technology, 195, 92–100.

    CAS  Google Scholar 

  • Wang, Z. Y., Shao, Y. S., Gao, N. Y., Lu, X., & An, N. (2018b). Degradation of diethyl phthalate (DEP) by UV/persulfate: an experiment and simulation study of contributions by hydroxyl and sulfate radicals. Chemosphere, 193, 602–610.

    CAS  Google Scholar 

  • Wen, D., Wu, Z. D., Tang, Y. B., Li, M. K., & Qiang, Z. M. (2018). Accelerated degradation of sulfamethazine in water by VUV/UV photo-Fenton process: impact of sulfamethazine concentration on reaction mechanism. Journal of Hazardous Materials, 344, 1181–1187.

    CAS  Google Scholar 

  • Wu, Y. W., Chen, X. T., Han, Y., Yue, D. T., Cao, X. D., Zhao, Y. X., & Qian, X. F. (2019). Highly efficient utilization of nano-Fe(0) embedded in mesoporous carbon for activation of peroxydisulfate. Environmental Science & Technology, 53, 9081–9090.

    CAS  Google Scholar 

  • Yan, J., Han, L., Gao, W., Xue, S., & Chen, M. (2015). Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene. Bioresource Technololy, 175, 269–274.

    CAS  Google Scholar 

  • Yang, Q., Ma, Y. H., Chen, F., Yao, F. B., Sun, J., Wang, S. N., Yi, K. X., Hou, L. H., Li, X. M., & Wang, D. B. (2019a). Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chemical Engineering Journal, 378, 122149.

    CAS  Google Scholar 

  • Yang, S. D., & Che, D. (2017). Degradation of aquatic sulfadiazine by Fe0/persulfate: kinetics, mechanisms, and degradation pathway. RSC Advances, 7(67), 42233–42241.

    CAS  Google Scholar 

  • Yang, Y. J., Xu, L. J., Li, W. Y., Fan, W. J., Song, S., & Yang, J. (2019b). Adsorption and degradation of sulfadiazine over nanoscale zero-valent iron encapsulated in three-dimensional graphene network through oxygen driven heterogeneous Fenton-like reactions. Applied Catalysis B: Environmental, 259, 118057.

    CAS  Google Scholar 

  • Yin, R., Guo, W., Wang, H., Du, J., Zhou, X., Wu, Q., Zheng, H., Chang, J., & Ren, N. (2018). Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone: direct oxidation and nonradical mechanisms. Chemical Engineering Journal, 334, 2539–2546.

    CAS  Google Scholar 

  • Zhang, H., Liu, J., Zhao, G., Gao, Y., Tyliszczak, T., Glans, P. A., Guo, J., Ma, D., Sun, X. H., & Zhong, J. (2015). Probing the interfacial interaction in layered-carbon-stabilized iron oxide nanostructures: a soft X-ray spectroscopic study. ACS Applied Materials & Interfaces, 7, 7863–7868.

    CAS  Google Scholar 

  • Zhang, L. B. (2019). Comparative study of oxidative degradation of tetracycline in aqueous solution by Fe2+/Na2S2O8 and Fe0/Na2S2O8 process. Fresenius Environmental Bulletin, 5, 4106–4113.

    Google Scholar 

  • Zhang, L. B., & Shen, S. Y. (2020). Adsorption and catalytic degradation of sulfamethazine by mesoporous carbon loaded nano zero valent iron. Journal of Industrial and Engineering Chemistry, 83, 123–135.

    CAS  Google Scholar 

  • Zhang, W. J., Gao, H. Y., He, J. J., Yang, P., Wang, D. S., Ma, T., Xia, H., & Xu, X. Z. (2017a). Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H2O2 system: optimization of operating conditions and degradation pathway. Separation and Purification Technology, 172, 158–167.

    CAS  Google Scholar 

  • Zhang, Y., Hu, S. Q., Zhang, H. C., Shen, G. X., Yuan, Z. J., & Zhang, W. (2017b). Degradation kinetics and mechanism of sulfadiazine and sulfamethoxazole in an agricultural soil system with manure application. Science of the Total Environment, 607-608, 1348–1356.

    CAS  Google Scholar 

  • Zhao, J., Yang, X., Liang, G. W., Wang, Z. W., Li, S., Wang, Z. R., & Xie, X. Y. (2020). Effective removal of two fluoroquinolone antibiotics by PEG-4000 stabilized nanoscale zero-valent iron supported onto zeolite (PZ-NZVI). Science of the Total Environment, 710, 136289.

    CAS  Google Scholar 

  • Zhou, C. Y., Huang, D. L., Xu, P., Zeng, G. M., Huang, J. H., Shi, T. Z., Lai, C., Zhang, C., Cheng, M., Lu, Y., Duan, A. B., Xiong, W. P., & Zhou, M. (2019a). Efficient visible light driven degradation of sulfamethazine and tetracycline by salicylic acid modified polymeric carbon nitride via charge transfer. Chemical Engineering Journal, 370, 1077–1086.

    CAS  Google Scholar 

  • Zhou, Q. Y., Jiang, X., Guo, Y. H., Zhang, G. C., & Jiang, W. J. (2018). An ultra-high surface area mesoporous carbon prepared by a novel MnO-templated method for highly effective adsorption of methylene blue. Chemosphere, 201, 519–529.

    CAS  Google Scholar 

  • Zhou, Z., Ma, J., Liu, X. T., Lin, C. Y., Sun, K., Zhang, H. J., Li, X. W., & Fan, G. X. (2019b). Activation of peroxydisulfate by nanoscale zero-valent iron for sulfamethoxazole removal in agricultural soil: effect, mechanism and ecotoxicity. Chemosphere, 223, 196–203.

    CAS  Google Scholar 

  • Zhu, Z. G., Xu, Y., Qi, B. Y., Zeng, G. F., Wu, P., Liu, G. J., Wang, W., Cui, F. Y., & Sun, Y. H. (2017). Adsorption-intensified degradation of organic pollutants over bifunctional alpha-Fe@carbon nanofibers. Environmental Science: Nano, 4(2), 302–306.

    CAS  Google Scholar 

  • Zou, X. L., Zhou, T., Mao, J., & Wu, X. H. (2014). Synergistic degradation of antibiotic sulfadiazine in a heterogeneous ultrasound-enhanced Fe0/persulfate Fenton-like system. Chemical Engineering Journal, 257, 36–44.

    CAS  Google Scholar 

Download references

Funding

The study is supported by the National Engineering Laboratory for Wheat & Corn Further Processing, Henan University of Technology (grant no. NL2018010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Jiang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. The nZVI/MC composite possessed larger specific surface area and higher proportion of mesopores.

2. The SDZ degradation in nZVI/MC + PS system was enhanced through the adsorption and catalytic degradation of nZVI/MC composite.

3. The nZVI loading amount and composite dosage can enhance the SDZ degradation.

4. The composite is relatively stable according to the analyses of BET, FT-IR, and XPS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Guo, Y., Xie, R. et al. An Efficient Catalytic Composite Material of Mesoporous Carbon Loaded Nano Zero-Valent Iron as an Activator for the Degradation of Sulfadiazine. Water Air Soil Pollut 231, 375 (2020). https://doi.org/10.1007/s11270-020-04709-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04709-5

Keywords

Navigation