Skip to main content
Log in

Passivating Effect of Dewatered Sludge and Biochar on As-Contaminated Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The pollution caused by As in soil menaces the health of humans. There are characteristics of waste utilization, low cost, and a wide range of materials by using dewatered sludge as the main component of soil repair agents. In this paper, dewatered sludge and biochar were used as repair agents for As pollution, which were rarely reported, and the related passivation experiments were carried out. Through the analysis of experimental data of the basic physical and chemical properties of contaminated soil, various characteristics of repair agent and As morphology were obtained, and the applicability and passivation effect of dewatered sludge-biochar compound repair agent and dewatered sludge as an individual repair agent on passivation of As pollution in soil was discussed. By comparing different passivation effects, the repairing effect increases with time, and the optimal repair time was 40 days; in the set experiment group, the best passivation effect of the individual repair agent was the S3 (dry sludge accounting for 20% of soil samples) experimental group, and the best effect of the compound repair agent was the S + B3 (dry sludge and biochar accounting for 10% and 2% of soil samples, respectively) group. As a repair agent, the dewatered sludge-biochar compound repair agent can be used to repair As-contaminated soil, which provides a new method for the recycling and waste utilization of dewatered sludge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122(2), 121–142.

    Article  CAS  Google Scholar 

  • Beesley, L., & Marmiroli, M. (2011). The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 159(2), 474–480.

    Article  CAS  Google Scholar 

  • Beesley, L., Marmiroli, M., Pagano, L., Pigoni, V., Fellet, G., Fresno, T., Vamerali, T., Bandiera, M., & Marmiroli, N. (2013). Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). The Science of the Total Environment, 454-455, 598–603.

    Article  CAS  Google Scholar 

  • Deng, C., Wen, J., Li, Z., Luo, N., Huang, M., & Yang, R. (2018). Passivating effect of dehydrated sludge and sepiolite on arsenic contaminated soil. Ecotoxicology and Environmental Safety, 164, 270–276.

    Article  CAS  Google Scholar 

  • Fresno, T., Penalosa, J. M., Santner, J., Puschenreiter, M., Prohaska, T., & Moreno-Jimenez, E. (2016). Iron plaque formed under aerobic conditions efficiently immobilizes arsenic in Lupinus albus L roots. Environmental Pollution, 216, 215–222.

    Article  CAS  Google Scholar 

  • Garau, G., Castaldi, P., Santona, L., Deiana, P., & Melis, P. (2007). Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma, 142(1–2), 47–57.

    Article  CAS  Google Scholar 

  • Gorny, J., Billon, G., Noiriel, C., Dumoulin, D., Lesven, L., & Madé, B. (2016). Chromium behavior in aquatic environments: A review. Environmental Reviews, 24(4), 503–516.

    Article  CAS  Google Scholar 

  • Gupta, A. D., & Karthikeyan, S. (2016). Individual and combined toxic effect of nickel and chromium on biochemical constituents in E. coli using FTIR spectroscopy and principle component analysis. Ecotoxicology and Environmental Safety, 130, 289–294.

    Article  CAS  Google Scholar 

  • Hartley, W., Dickinson, N. M., Riby, P., & Lepp, N. W. (2009). Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environmental Pollution, 157(10), 2654–2662.

    Article  CAS  Google Scholar 

  • Hendershot, W.H., Lalande, H. & Duquette, M. (1993). Ion exchange and exchangeable cations. Soil sampling and methods of analysis 19:167–176. Soil sampling and methods of analysis, 19.

  • Hmid, A., Al Chami, Z., Sillen, W., De Vocht, A., & Vangronsveld, J. (2015). Olive mill waste biochar: A promising soil amendment for metal immobilization in contaminated soils. Environmental Science and Pollution Research, 22(2), 1444–1456.

    Article  CAS  Google Scholar 

  • Huang, B., Li, Z., Huang, J., Chen, G., Nie, X., Ma, W., Yao, H., Zhen, J., & Zeng, G. (2015). Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil. Environmental Science and Pollution Research International, 22(15), 11467–11477.

    Article  CAS  Google Scholar 

  • Huang, M., Zhu, Y., Li, Z., Huang, B., Luo, N., Liu, C., & Zeng, G. (2016). Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: Mechanisms, efficacy, problems, and strategies. Water, Air, & Soil Pollution, 227(10), 359.

    Article  Google Scholar 

  • Huang, M., Li, Z., Huang, B., Luo, N., Zhang, Q., Zhai, X., & Zeng, G. (2018). Investigating binding characteristics of cadmium and copper to DOM derived from compost and rice straw using EEM-PARAFAC combined with two-dimensional FTIR correlation analyses. Journal of Hazardous Materials, 344, 539–548.

    Article  CAS  Google Scholar 

  • Iqbal, M., Puschenreiter, M., Oburger, E., Santner, J., & Wenzel, W. W. (2012). Sulfur-aided phytoextraction of Cd and Zn by Salix smithiana combined with in situ metal immobilization by gravel sludge and red mud. Environmental Pollution, 170, 222–231.

    Article  CAS  Google Scholar 

  • Ko, M. S., Park, H. S., & Lee, J. U. (2017). Influence of indigenous bacteria stimulation on arsenic immobilization in field study. Catena, 148, 46–51.

    Article  CAS  Google Scholar 

  • Liang, J., Yang, Z., Tang, L., Zeng, G., Yu, M., Li, X., Wu, H., Qian, Y., Li, X., & Luo, Y. (2017). Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere, 181, 281.

    Article  CAS  Google Scholar 

  • Liu, C., Li, Z., Chang, X., He, J., Nie, X., Liu, L., Xiao, H., Wang, D., Peng, H., & Zeng, G. (2018). Soil carbon and nitrogen sources and redistribution as affected by erosion and deposition processes: A case study in a loess hilly-gully catchment, China. Agriculture, Ecosystems and Environment, 253, 11–12.

    Article  CAS  Google Scholar 

  • Liu, C., Li, Z., Berhe, A. A., Xiao, H., Liu, L., Wang, D., Peng, H., & Zeng, G. (2019). Characterizing eroded dissolved organic matter in a loess hilly catchment using fluorescence EEM - PARAFAC and UV-visible absorption: Insights from source identification and carbon cycling. Geoderma, 334, 37–48.

    Article  CAS  Google Scholar 

  • Lu, R. K. (2000). Soil agricultural chemistry analysis methods. Beijing: Agricultural Technology Press.

    Google Scholar 

  • Mcbride, M. B., Richards, B. K., & Steenhuis, T. (2004). Bioavailability and crop uptake of trace elements in soil columns amended with sewage sludge products. Plant and Soil, 262(1–2), 71–84.

    Article  CAS  Google Scholar 

  • Namgay, T., Singh, B., Singh, B. P., Krull, E., Singh, B., & Joseph, S. (2010). Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Australian Journal of Soil Research, 48(7), 638–647.

    Article  CAS  Google Scholar 

  • Paranavithana, G. N., Kawamoto, K., Inoue, Y., Saito, T., Vithanage, M., Kalpage, C. S., & Herath, G. B. B. (2016). Adsorption of Cd2+ and Pb2+ onto coconut shell biochar and biochar-mixed soil. Environmental Earth Sciences, 75(6).

  • Park, J. H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N., & Chung, J. W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 185(2–3), 549–574.

    Article  CAS  Google Scholar 

  • Pedron, F., Petruzzelli, G., Barbafieri, M., & Tassi, E. (2009). Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Chemosphere, 75(6), 808–814.

    Article  CAS  Google Scholar 

  • Richards, B. K., Peverly, J. H., Steenhuis, T. S., & Liebowitz, B. N. (1997). Effect of processing mode on trace elements in dewatered sludge products. Journal of Environmental Quality, 26(3), 782–788.

    Article  CAS  Google Scholar 

  • Rinklebe, J., Shaheen, S. M., & Frohne, T. (2016). Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil. Chemosphere, 142, 41–47.

    Article  CAS  Google Scholar 

  • Shen, X., Huang, D. Y., Ren, X. F., Zhu, H. H., Wang, S., Xu, C., He, Y. B., Luo, Z. C., & Zhu, Q. H. (2016). Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil. Journal of Environmental Management, 168, 245–251.

    Article  CAS  Google Scholar 

  • Walter, J. F., & Walter, W. W. (2002). Arsenic transformations in the soil-rhizosphere-plant system: Fundamentals and potential application to phytoremediation. Journal of Biotechnology, 99(3), 259–278.

    Article  Google Scholar 

  • Wang, J. T., Zhang, L., Kang, Y., Chen, G., & Jiang, F. (2018). Long-term feeding of elemental sulfur alters microbial community structure and eliminates mercury methylation potential in sulfate-reducing bacteria abundant activated sludge. Environmental Science & Technology, 52(8), 4746–4753.

    Article  CAS  Google Scholar 

  • Wen, J., Li, Z., Huang, B., Luo, N., Huang, M., Yang, R., Zhang, Q., Zhai, X., & Zeng, G. (2018a). The complexation of rhizosphere and nonrhizosphere soil organic matter with chromium: Using elemental analysis combined with FTIR spectroscopy. Ecotoxicology and Environmental Safety, 154, 52–58.

    Article  CAS  Google Scholar 

  • Wen, J., Li, Z., Luo, N., Huang, M., Yang, R., & Zeng, G. (2018b). Investigating organic matter properties affecting the binding behavior of heavy metals in the rhizosphere of wetlands. Ecotoxicology and Environmental Safety, 162, 184–191.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D. C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436(2), 309–323.

    Article  CAS  Google Scholar 

  • Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable biochar to mitigate global climate change. Nature Communications, 1, 56.

    Article  Google Scholar 

  • Xiu, W., Guo, H., Shen, J., Liu, S., Ding, S., Hou, W., Ma, J., & Dong, H. (2016). Stimulation of Fe(II) oxidation, biogenic lepidocrocite formation, and arsenic immobilization by Pseudogulbenkiania sp. strain 2002. Environmental Science & Technology, 50(12), 6449–6458.

    Article  CAS  Google Scholar 

  • Yang, Z., Liu, L., Chai, L., Liao, Y., Yao, W., & Xiao, R. (2015). Arsenic immobilization in the contaminated soil using poorly crystalline Fe-oxyhydroxy sulfate. Environmental Science and Pollution Research International, 22(16), 12624–12632.

    Article  CAS  Google Scholar 

  • Yuan, Y., Chai, L., Yang, Z., & Yang, W. (2017). Simultaneous immobilization of lead, cadmium, and arsenic in combined contaminated soil with iron hydroxyl phosphate. Journal of Soils and Sediments, 17(2), 432–439.

    Article  CAS  Google Scholar 

  • Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F., & Zhang, G. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1), 84–91.

    Article  CAS  Google Scholar 

  • Zhang, Q., Li, Z., Huang, B., Luo, N., Long, L., Huang, M., Zhai, X., & Zeng, G. (2017). Effect of land use pattern change from paddy soil to vegetable soil on the adsorption-desorption of cadmium by soil aggregates. Environmental Science and Pollution Research International, 24(3), 2734–2743.

    Article  CAS  Google Scholar 

Download references

Funding

The study was funded by the National Natural Science Foundation of China (No. 51879103), Key R&D Program of Science and Technology of Hunan Province in China (No. 2017SK2351), and Science and Technology Plan Project of Hunan Province in China (No. 2018SK2047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwu Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, N., Wen, J., Li, Z. et al. Passivating Effect of Dewatered Sludge and Biochar on As-Contaminated Soil. Water Air Soil Pollut 231, 1 (2020). https://doi.org/10.1007/s11270-019-4368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4368-6

Keywords

Navigation