Skip to main content

Advertisement

Log in

Arsenic immobilization in the contaminated soil using poorly crystalline Fe-oxyhydroxy sulfate

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A low crystalline Fe-oxyhydroxy sulfate (FeOS) was used to immobilize arsenic (As) in soils in this study. The effects of FeOS amount, treatment time and soil moisture on As immobilization were investigated. The results showed that water-soluble and NaHCO3-extractable As were immobilized by 53.4–99.8 and 13.8–73.3 % respectively, with 1–10 % of FeOS addition. The highest immobilization of water-soluble (98.5 %) and NaHCO3-extractable arsenic (47.2 %) was achieved under condition of 4 % of FeOS and 80 % of soil moisture. Further, more amounts of FeOS addition resulted in less time requirement for As immobilization. Sequential chemical extraction experiment revealed that easily mobile arsenic phase was transferred to less mobile phase. The FeOS-bonded As may play a significant role in arsenic immobilization. Under leaching with simulated acid rain at 60 times pore volumes, accumulation amount of As release from untreated soil and soil amended with FeOS were 98.4 and 1.2 mg, respectively, which correspond to 7.69 and 0.09 % of total As amounts in soil. The result showed that the low crystalline FeOS can be used as a suitable additive for arsenic immobilization in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Antelo J, Fiol S, Gondar D, López R, Arce F (2012) Comparison of arsenate, chromate and molybdate binding on schwertmannite: surface adsorption vs anion-exchange. J Colloid Interface Sci 386:338–343

    Article  CAS  Google Scholar 

  • Ascher J, Ceccherini MT, Landi L, Mench M, Pietramellara G, Nannipieri P, Renella G (2009) Composition, biomass and activity of microflora, and leaf yields and foliar elemental concentrations of lettuce, after in situ stabilization of an arsenic-contaminated soil. Appl Soil Ecol 41:351–359

    Article  Google Scholar 

  • Blgham JM, Schwertmann U, Carlson L, Murad E (1990) A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochim Cosmochim Acta 54:2743–2758

    Article  Google Scholar 

  • Boily JF, Gassman PL, Peretyazhko T, Szanyi J, Zachara JM (2010) FTIR spectral components of schwertmannite. Environ Sci Technol 44:1185–1190

    Article  CAS  Google Scholar 

  • Burton ED, Bush RT, Johnston SG, Watling KM, Hocking RK, Sullivan LA, Parker GK (2009) Sorption of arsenic(V) and arsenic(III) to schwertmannite. Environ Sci Technol 43:9202–9207

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina AA, Rocamora A, García-Gomis C, Martínez-Sánchez F, Burló F (2004) Arsenic and zinc biogeochemistry in pyrite mine waste from the Aznalcóllar environmental disaster. Geoderma 122:195–203

    Article  CAS  Google Scholar 

  • Chiang KY, Lin KC, Lin SC, Chang TK, Wang MK (2010) Arsenic and lead (beudantite) contamination of agricultural rice soils in the Guandu Plain of northern Taiwan. J Hazard Mater 181:1066–1071

    Article  CAS  Google Scholar 

  • García-Sanchez A, Alvarez-Ayuso E, Rodriguez-Martin F (2002) Sorption of As(V) by some oxyhydroxides and clay minerals. Application to its immobilization in two polluted mining soils. Clay Miner 37:187–194

    Article  Google Scholar 

  • Guo X, Du Y, Chen F, Park HS, Xie Y (2007) Mechanism of removal of arsenic by bead cellulose loaded with iron oxyhydroxide (β-FeOOH): EXAFS study. J Colloid Interface Sci 314:427–433

    Article  CAS  Google Scholar 

  • Hartley W, Edwards R, Lepp NW (2004) Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests. Environ Pollut 131:495–504

    Article  CAS  Google Scholar 

  • Jomova K et al (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107

    CAS  Google Scholar 

  • Jönsson J, Persson P, Sjöberg S, Lövgren L (2005) Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Appl Geochem 20:179–191

    Article  Google Scholar 

  • Kim JY, Davis AP, Kim KW (2003) Stabilization of available arsenic in highly contaminated mine tailings using iron. Environ Sci Technol 37:189–195

    Article  CAS  Google Scholar 

  • Kim KR, Lee BT, Kim KW (2012) Arsenic stabilization in mine tailings using nano-sized magnetite and zero valent iron with the enhancement of mobility by surface coating. J Geochem Explor 113:124–129

    Article  CAS  Google Scholar 

  • Ko MS, Kim JY, Bang S, Lee JS, Ko JI, Kim KW (2012) Stabilization of the As-contaminated soil from the metal mining areas in Korea. Environ Geochem Health 34:143–149

    Article  CAS  Google Scholar 

  • Komárek M, Vaněk A, Ettler V (2013) Chemical stabilization of metals and arsenic in contaminated soils using oxides—a review. Environ Pollut 172:9–22

    Article  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manag 28:215–225

    Article  CAS  Google Scholar 

  • Kumpiene J, Fitts JP, Mench M (2012) Arsenic fractionation in mine spoils 10 years after aided phytostabilization. Environ Pollut 166:82–88

    Article  CAS  Google Scholar 

  • Lee JE, Kim Y (2008) A quantitative estimation of the factors affecting pH changes using simple geochemical data from acid mine drainage. Environ Geol 55:65–75

    Article  CAS  Google Scholar 

  • Liao Y, Liang J, Zhou L (2011) Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater. Chemosphere 83:295–301

    Article  CAS  Google Scholar 

  • Mench M, Vangronsveld J, Clijsters H, Lepp NW, Edwards R (1999) In situ metal immobilization and phytostabilization of contaminated soils. In: Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, p 323

  • Moore TJ, Rightmire CM, Vempati RK (2000) Ferrous iron treatment of soils contaminated with arsenic-containing wood-preserving solution. Soil Sediment Contam 9:375–405

    Article  CAS  Google Scholar 

  • Ng JC, Wang J, Shraim A (2003) A global health problem caused by arsenic from natural sources. Chemosphere 52:1353–1359

    Article  CAS  Google Scholar 

  • Nielsen SS, Petersen LR, Kjeldsen P, Jakobsen R (2011) Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment. Chemosphere 84:383–389

    Article  CAS  Google Scholar 

  • Paikaray S, Göttlicher J, Peiffer S (2011) Removal of As(III) from acidic waters using schwertmannite: surface speciation and effect of synthesis pathway. Chem Geol 283:134–142

    Article  CAS  Google Scholar 

  • Regenspurg S, Brand A, Peiffer S (2004) Formation and stability of schwertmannite in acidic mining lakes. Geochim Cosmochim Acta 68:1185–1197

    Article  CAS  Google Scholar 

  • Subacz JL, Barnett MO, Jardine PM, Stewart MA (2007) Decreasing arsenic bioaccessibility/bioavailability in soils with iron amendments. J Environ Sci Health A 42:1317–1329

    Article  CAS  Google Scholar 

  • Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano DC (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal Chim Acta 436:309–323

    Article  CAS  Google Scholar 

  • Xenidis A, Stouraiti C, Papassiopi N (2010) Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron. J Hazard Mater 177:929–937

    Article  CAS  Google Scholar 

  • Zhu YG, Williams PN, Meharg AA (2008) Exposure to inorganic arsenic from rice: a global health issue? Environ Pollut 154:169–171

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge National Natural Science Foundation of China (51304251) and the Key Project of Science and Technology of Hunan Province, China (2012FJ1010), for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiyang Xiao.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Liu, L., Chai, L. et al. Arsenic immobilization in the contaminated soil using poorly crystalline Fe-oxyhydroxy sulfate. Environ Sci Pollut Res 22, 12624–12632 (2015). https://doi.org/10.1007/s11356-015-4455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4455-1

Keywords

Navigation