Skip to main content

Advertisement

Log in

Olive mill waste biochar: a promising soil amendment for metal immobilization in contaminated soils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The potential use of biochar from olive mill waste for in situ remediation of metal contaminated soils was evaluated. Biochar was mixed with metal contaminated soil originating from the vicinity of an old zinc smelter. Soil–biochar mixtures were equilibrated for 30 and 90 days. At these time points, Ca(NO3)2 exchangeable metals were determined, and effects of the biochar amendment on soil toxicity were investigated using plants, bacteria, and earthworms. Bean (Phaseolus vulgaris) growth, metal content, antioxidative enzymes activities, and soluble protein contents were determined. Furthermore, effects on soil microbial communities (activity, diversity, richness) were examined using Biolog ECOplates. After 120 days of soil–biochar equilibration, effects on weight and reproduction of Eisenia foetida were evaluated. With increasing biochar application rate and equilibration period, Ca(NO3)2 exchangeable metals decreased, and growth of bean plants improved; leaf metal contents reduced, the activities of antioxidative stress enzymes decreased, and soluble protein contents increased. Soil microbial activity, richness, and diversity were augmented. Earthworm mortality lowered, and their growth and reproduction showed increasing trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al Chami Z, Cavoski I, Mondelli D, Miano T (2013) Effect of compost and manure amendments on zinc soil speciation, plant content, and translocation in an artificially contaminated soil. Environ Sci Pollut Res Int 20:4766–4776

    Article  Google Scholar 

  • Alburquerque JA, Calero JM, Barrón V, Torrent J, del Campillo MC, Gallardo A, Villar R (2013) Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J Plant Nutr Soil Sci 177:16–25. doi:10.1002/jpln.201200652

    Article  CAS  Google Scholar 

  • Amer N, Al Chami Z, Al Bitar L, Mondelli D, Dumontet S (2012) Evaluation of atriplex halimus, medicago lupulina and portulaca oleracea for phytoremediation of Ni, Pb, and Zn. Int J Phytoremediation 15:498–512. doi:10.1080/15226514.2012.716102

    Article  Google Scholar 

  • Beesley L, Marmiroli M (2011) The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar. Environ Pollut 159:474–480. doi:10.1016/j.envpol.2010.10.016

    Article  CAS  Google Scholar 

  • Bergmeyer HU, Gawehn K, Grassl M (1974) Enzymes as biochemical reagents. In: Bergmeyer HU (ed) Methods in enzymatic analysis. Academic, New York, pp 425–522

    Google Scholar 

  • Bolan NS, Adriano DC, Duraisamy P, Mani A (2003) Immobilization and phytoavailability of cadmium in variable charge soils. III. Effect of biosolid compost addition. Plant Soil 256:231–241. doi:10.1023/a:1026288021059

    Article  CAS  Google Scholar 

  • Bouwman L, Vangronsveld J (2004) Rehabilitation of the nematode fauna in a phytostabilized, heavily zinc-contaminated, sandy soil. J Soils Sediments 4:17–23. doi:10.1007/bf02990824

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Brodowski S, Amelung W, Haumaier L, Abetz C, Zech W (2005) Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128:116–129. doi:10.1016/j.geoderma.2004.12.019

    Article  CAS  Google Scholar 

  • Callender E (2003) Heavy metals in the environment—historical trends. In: Sherwood Lollar B (ed) Treatise on geochemistry, vol 9. vol Treatise on Geochemistry. Elsevier pp 67–105. doi:10.1016/B0-08-043751-6/09161-1

  • Carter S, Shackley S, Sohi S, Suy T, Haefele S (2013) The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy 3:404–418

    Article  CAS  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Soil Res 45:629–634. doi:10.1071/SR07109

    Article  CAS  Google Scholar 

  • Cheng CH, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence. Geochim Cosmochim Acta 72:1598–1610. doi:10.1016/j.gca.2008.01.010

    Article  CAS  Google Scholar 

  • Chirenje T, Lena MQ (2002) Impact of high-volume wood-fired boiler ash amendment on soil properties and nutrients. Commun Soil Sci Plant Anal 33:1–17. doi:10.1081/css-120002373

    Article  CAS  Google Scholar 

  • Cohen MF, Yamasaki H, Mazzola M (2004) Bioremediation of soils by plant–microbe systems. Int J Green Energy 1:301–312. doi:10.1081/ge-200033610

    Article  CAS  Google Scholar 

  • Conder JM, Lanno RP, Basta NT (2001) Assessment of metal availability in smelter soil using earthworms and chemical extractions. J Environ Qual 30:1231–1237

    Article  CAS  Google Scholar 

  • Costa G, Spitz E (1997) Influence of cadmium on soluble carbohydrates, free amino acids, protein content of in vitro cultured Lupinus albus. Plant Sci 128:131–140. doi:10.1016/S0168-9452(97)00148-9

    Article  CAS  Google Scholar 

  • Cui L, Li L, Zhang A, Pan G, Bao D, Chang A (2011) Biochar amendment greatly reduces rice cd uptake in a contaminated paddy soil: a two-year field experiment. Bioresources 6(3):2605–2618

    CAS  Google Scholar 

  • Denyes MJ, Langlois VS, Rutter A, Zeeb BA (2012) The use of biochar to reduce soil PCB bioavailability to Cucurbita pepo and Eisenia fetida. Sci Total Environ 437:76–82. doi:10.1016/j.scitotenv.2012.07.081

    Article  CAS  Google Scholar 

  • Djebali W, Gallusci P, Polge C, Boulila L, Galtier N, Raymond P, Chaibi W, Brouquisse R (2008) Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants. Planta 227:625–639. doi:10.1007/s00425-007-0644-6

    Article  CAS  Google Scholar 

  • Dong X, Ma LQ, Li Y (2011) Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J Hazard Mater 190:909–915. doi:10.1016/j.jhazmat.2011.04.008

    Article  CAS  Google Scholar 

  • Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 13–32

    Google Scholar 

  • Ericson MC, Alfinito AE (1984) Proteins produced during salt stress in tobacco cell cultures. Plant Physiol 74:506–509

    Article  CAS  Google Scholar 

  • Fellet G, Marchiol L, Delle Vedove G, Peressotti A (2011) Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere 83:1262–1267

    Article  CAS  Google Scholar 

  • Garland JL (1996) Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biol Biochem 28:213–221. doi:10.1016/0038-0717(95)00112-3

    Article  CAS  Google Scholar 

  • Garland JL (1997) Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol Ecol 24:289–300. doi:10.1111/j.1574-6941.1997.tb00446.x

    Article  CAS  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    CAS  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230. doi:10.1007/s00374-002-0466-4

    Article  CAS  Google Scholar 

  • Gomez E, Garland J, Conti M (2004) Reproducibility in the response of soil bacterial community-level physiological profiles from a land use intensification gradient. Appl Soil Ecol 26:21–30. doi:10.1016/j.apsoil.2003.10.007

    Article  Google Scholar 

  • Graber E, Tsechansky L, Gerstl Z, Lew B (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481–496. doi:10.1007/s11104-010-0544-6

    Article  CAS  Google Scholar 

  • Gray CW, Dunham SJ, Dennis PG, Zhao FJ, McGrath SP (2006) Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ Pollut 142:530–539. doi:10.1016/j.envpol.2005.10.017

    Article  CAS  Google Scholar 

  • Grotenhuis TJTC, Rijnaarts HHHM (2011) In situ remediation technologies. In: Swartjes FA (ed) Dealing with contaminated sites. Springer, Netherlands, pp 949–977. doi:10.1007/978-90-481-9757-6_21

    Chapter  Google Scholar 

  • Hammes K, Schmidt MWI (2009) Changes of biochar in soil. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, London, pp 169–181

    Google Scholar 

  • Hogervorst J, Plusquin M, Vangronsveld J, Nawrot T, Cuypers A, Van Hecke E, Roels HA, Carleer R, Staessen JA (2007) House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environ Res 103:30–37

    Article  CAS  Google Scholar 

  • James EA, Stephen J (2009) Characteristics of biochar: microchemical properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 33–52

    Google Scholar 

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187. doi:10.1016/j.agee.2011.08.015

    Article  Google Scholar 

  • Jiang J, Xu RK, Jiang TY, Li Z (2012) Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J Hazard Mater 230:145–150

    Article  Google Scholar 

  • Karami N, Clemente R, Moreno-Jiménez E, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48. doi:10.1016/j.jhazmat.2011.04.025

    Article  CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—a review. Waste Manage 28:215–225

    Article  CAS  Google Scholar 

  • Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449. doi:10.1016/j.geoderma.2010.05.013

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. Earthscan, London

    Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Li D, Hockaday WC, Masiello CA, Alvarez PJJ (2011) Earthworm avoidance of biochar can be mitigated by wetting. Soil Biol Biochem 43:1732–1737. doi:10.1016/j.soilbio.2011.04.019

    Article  CAS  Google Scholar 

  • Liesch AM, Weyers SL, Gaskin JW, Das KC (2010) Impact of two different biochars on earthworm growth and survival. Ann Environ Sci 4:1–9

    CAS  Google Scholar 

  • Liu Z, Zhang FS (2009) Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J Hazard Mater 167:933–939. doi:10.1016/j.jhazmat.2009.01.085

    Article  CAS  Google Scholar 

  • Meers E, Du Laing G, Unamuno V, Ruttens A, Vangronsveld J, Tack FMG, Verloo MG (2007) Comparison of cadmium extractability from soils by commonly used single extraction protocols. Geoderma 141:247–259

    Article  CAS  Google Scholar 

  • Mench MJ, Didier VL, Löffler M, Gomez A, Masson P (1994) A mimicked in-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. J Environ Qual 23:58–63. doi:10.2134/jeq1994.00472425002300010010x

    Article  CAS  Google Scholar 

  • Mohan BS, Hosetti BB (1997) Potential phytotoxicity of lead and cadmium to lemna minor grown in sewage stabilization ponds. Environ Pollut 98:233–238. doi:10.1016/S0269-7491(97)00125-5

    Article  CAS  Google Scholar 

  • Muhammad A, Xu J, Li Z, Wang H, Yao H (2005) Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities. Chemosphere 60:508–514. doi:10.1016/j.chemosphere.2005.01.001

    Article  CAS  Google Scholar 

  • Nadgorska-Socha A, Kafel A, Kandziora-Ciupa M, Gospodarek J, Zawisza-Raszka A (2013) Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environ Sci Pollut Res Int 20:1124–1134

    Article  CAS  Google Scholar 

  • Nawrot T, Plusquin M, Hogervorst J, Roels HA, Celis H, Thijs L, Vangronsveld J, Van Hecke E, Staessen JA (2006) Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol 7:119–126

    Article  CAS  Google Scholar 

  • OECD, Organization of Economical Cooperation and Development (2004) “Guideline for testing of chemicals,” no. 222, Earthworm reproduction test (Eisenia fetida/andrei). Organization for Economic Co-Operation and Development, Paris

    Google Scholar 

  • Palma JM, Sandalio LM, Javier Corpas F, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530. doi:10.1016/S0981-9428(02)01404-3

    Article  CAS  Google Scholar 

  • Park J, Choppala G, Bolan N, Chung J, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348:439–451. doi:10.1007/s11104-011-0948-y

    Article  CAS  Google Scholar 

  • Peng X, Ye LL, Wang CH, Zhou H, Sun B (2011) Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res 112:159–166. doi:10.1016/j.still.2011.01.002

    Article  Google Scholar 

  • Quilliam RS, DeLuca TH, Jones DL (2012) Biochar application reduces nodulation but increases nitrogenase activity in clover. Plant Soil 366:83–92. doi:10.1007/s11104-012-1411-4

    Article  Google Scholar 

  • Rondon MA, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43:699–708. doi:10.1007/s00374-006-0152-z

    Article  Google Scholar 

  • Ruttens A, Mench M, Colpaert JV, Boisson J, Carleer R, Vangronsveld J (2006) Phytostabilization of a metal contaminated sandy soil. I: influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environ Pollut 144:524–532. doi:10.1016/j.envpol.2006.01.038

    Article  CAS  Google Scholar 

  • Ruttens A, Boulet J, Weyens N, Smeets K, Adriaensen K, Meers E, Van Slycken S, Tack F, Meiresonne L, Thewys T, Witters N, Carleer R, Dupae J, Vangronsveld J (2011) Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils. Int J Phytoremediation 13:194–207. doi:10.1080/15226514.2011.568543

    Article  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144. doi:10.1016/S0168-9452(01)00517-9

    Article  CAS  Google Scholar 

  • Silber A, Levkovitch I, Graber ER (2010) pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environ Sci Technol 44:9318–9323

    Article  CAS  Google Scholar 

  • Staessen JA, Roels HA, Emelianov D, Kuznetsova T, Thijs L, Vangronsveld J, Fagard R (1999) Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. Lancet 353:1140–1144

    Article  CAS  Google Scholar 

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macedo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  • Swiatkowski A, Pakula M, Biniak S, Walczyk M (2004) Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead(II) ions. Carbon 42:3057–3069. doi:10.1016/j.carbon.2004.06.043

    Article  CAS  Google Scholar 

  • Terzano R, Al Chami Z, Vekemans B, Janssens K, Miano T, Ruggiero P (2008) Zinc distribution and speciation within rocket plants (Eruca vesicaria L. Cavalieri) grown on a polluted soil amended with compost as determined by XRF microtomography and micro-XANES. J Agr Food Chem 56:3222–3231

    Article  CAS  Google Scholar 

  • Thies JE, Rillig MC (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, pp 85–105

    Google Scholar 

  • Turpeinen R, Kairesalo T, Haggblom MM (2004) Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. FEMS Microbiol Ecol 47:39–50

    Article  CAS  Google Scholar 

  • Uchimiya M, Lima IM, Klasson KT, Wartelle LH (2010) Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80:935–940. doi:10.1016/j.chemosphere.2010.05.020

    Article  CAS  Google Scholar 

  • Uchimiya M, Chang S, Klasson KT (2011) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190:432–441

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (1997) Chelating extraction of heavy metals from contaminated soils (subproject number 052). Hazardous Substance Research Centers

  • Van Assche F, Clijsters H (1990) A biological test system for the evaluation of the phytotoxicity of metal-contaminated soils. Environ Pollut 66:157–172. doi:10.1016/0269-7491(90)90118-V

    Article  Google Scholar 

  • Van Assche F, Cardinaels C, Clijsters H (1988) Induction of enzyme capacity in plants as a result of heavy metal toxicity: dose–response relations in Phaseolus vulgaris L., treated with zinc and cadmium. Environ Pollut 52:103–115. doi:10.1016/0269-7491(88)90084-X

    Article  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246. doi:10.1007/s11104-009-0050-x

    Article  Google Scholar 

  • Vangronsveld J, Clijsters H (1992) A biological test system for the evaluation of the phytotoxicity and immobilization by additives in metal contaminated soils. Paper presented at the Metal Compounds in Environment and Life, 4: Interrelation between Chemistry and Biology

  • Vangronsveld J, Clijsters H (1994) Toxic effects of metals. In: Farago ME (ed) Plants and the chemical elements. Wiley-VCH Verlag GmbH, pp 149–177. doi:10.1002/9783527615919.ch6

  • Vangronsveld J, Sterckx J, Van Assche F, Clijsters H (1995a) Rehabilitation studies on an old non-ferrous waste dumping ground: effects of revegetation and metal immobilization by beringite. J Geochem Explor 52:221–229. doi:10.1016/0375-6742(94)00045-D

    Article  CAS  Google Scholar 

  • Vangronsveld J, Van Assche F, Clijsters H (1995b) Reclamation of a bare industrial area contaminated by non-ferrous metals: in situ metal immobilization and revegetation. Environ Pollut 87:51–59. doi:10.1016/S0269-7491(99)80007-4

    Article  CAS  Google Scholar 

  • Vangronsveld J, Colpaert JV, Van Tichelen KK (1996) Reclamation of a bare industrial area contaminated by non-ferrous metals: physico-chemical and biological evaluation of the durability of soil treatment and revegetation. Environ Pollut 94:131–140

    Article  CAS  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res Int 16:765–794

    Article  CAS  Google Scholar 

  • Verheijen F, Jeffery S, Bastos AC, van der Velde M, Diafas I (2010) Biochar application to soils. A critical scientific review of effects on soil properties, processes and functions. European commission. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank J. Jeurissen for his help conducting the earthworms experiment. Deep appreciations for C. Put and A. Wijgaerts for their laboratory technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Hmid.

Additional information

Responsible editor: Zhihong Xu

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 347 kb)

ESM 2

(DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hmid, A., Al Chami, Z., Sillen, W. et al. Olive mill waste biochar: a promising soil amendment for metal immobilization in contaminated soils. Environ Sci Pollut Res 22, 1444–1456 (2015). https://doi.org/10.1007/s11356-014-3467-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3467-6

Keywords

Navigation