Skip to main content
Log in

Life Cycle Comparison of Membrane Capacitive Deionization and Reverse Osmosis Membrane for Textile Wastewater Treatment

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The reduced natural water sources on the one hand and the large amount of wastewater produced by the textile industry on the other hand lead to the requirement of an effective reuse of textile wastewater. In this study, the treatment of textile wastewater by the reverse osmosis membrane system and membrane capacitive deionization (MCDI) system has been investigated to improve the quality and the recovery rate of the effluent for reclamation. The maximum chemical oxygen demand (COD) removal efficiency obtained at 10 bar was 96.3% for BW30 reverse osmosis membrane. Diversified operating conditions, including working voltage and flow rate, were investigated systematically in the MCDI system which is an effective water purification technology. According to the obtained experimental results, the COD removal efficiency was thoroughly increased by rising the working voltage (from 0.2 to 1.2 V) and the flow rate (from 5 to 17.5 ml/min). The flow rate and the working voltage at which the COD from textile wastewater removal ratio was the highest were 10 ml/min and 1.2 V, respectively. A life cycle approach has also been implemented for the comparison of environmental impact assessment of the two desalination systems. In this study, a life cycle approach has been implemented for the comparison of environmental friendly impact assessment of the two desalination systems. It is concluded that MCDI system is much more environmental friendlier with 5641 times less values for damage assessment categories, on average.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acero, A.P., Rodriguez, C., & Ciroth, A. (2016). LCIA methods, impact assessment methods in life cycle assessment and their impact categories, Green Delta, Version 1.5.5.

  • Alventosa-deLara, E., Barredo-Damas, S., Zuriaga-Agustí, E., Alcaina-Miranda, M. I., & Iborra-Clar, M. I. (2014). Ultrafiltration ceramic membrane performance during the treatment of model solutions containing dye and salt. Separation and Purification Technology, 129, 96–105.

    Article  CAS  Google Scholar 

  • APHA (2016). WEF standard methods for the examination of water and wastewater.

  • Biesheuvel, P. M., Zhao, R., Porada, S., & Van der Wal, A. (2011). Theory of membrane capacitive deionization including the effect of the electrode pore space. Journal of Colloid and Interface Science, 360(1), 239–248.

    Article  CAS  Google Scholar 

  • Cetinkaya, A. Y. (2018). Performance and mechanism of direct As(III) removal from aqueous solution using low-pressure graphene oxide-coated membrane. Chemical Papers, 72(9), 2363–2373.

    Article  CAS  Google Scholar 

  • Çetinkaya, A. Y., Bilgili, L., & Kuzu, S. L. (2018). Life cycle assessment and greenhouse gas emission evaluation from Aksaray solid waste disposal facility. Air Quality, Atmosphere & Health, 11(5), 549–558.

  • Devleesschauwer, B., Havelaar, A. H., Noordhout, C. M., Haagsma, J. A., Praet, N., Dorny, P., Duchateau, L., Torgerson, P. R., Oyen, H., & Speybroeck, N. (2014). Calculating disability-adjusted life years to quantify burden of disease. International Journal of Public Health, 59(3), 565–569.

    Article  Google Scholar 

  • Dickhout, J. M., Moreno, J., Biesheuvel, P. M., Boels, L., & Lammertink, R. G. (2017). Produced water treatment by membranes: a review from a colloidal perspective. Journal of Colloid and Interface Science, 487, 523–534.

    Article  CAS  Google Scholar 

  • Duan, J., Litwiller, E., & Pinnau, I. (2015a). Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes. Jounal of Membrane Science, 473, 157–164.

    Article  CAS  Google Scholar 

  • Duan, J., Pan, Y., Pacheco, F., Litwiller, E., Lai, Z., & Pinnau, I. (2015b). High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8. Journal of Membrane Science, 476, 303–310.

    Article  CAS  Google Scholar 

  • Fababuj-Roger, M., Mendoza-Roca, J. A., Galiana-Aleixandre, M. V., Bes-Pia, A., Cuartas-Uribe, B., & Iborra-Clar, A. (2007). Reuse of tannery wastewaters by combination of ultrafiltration and reverse osmosis after a conventional physical-chemical treatment. Desalination, 204(1–3), 219–226.

    Article  CAS  Google Scholar 

  • Gallego-Schmid, A., & Tarpani, R. R. Z. (2019). Life cycle assessment of wastewater treatment in developing countries: a review. Water Research, 153, 63–79.

    Article  CAS  Google Scholar 

  • Gronlund, C. J., Humbert, S., Shaked, S., O’Neill, M. S., & Jolliet, O. (2015). Characterizing the burden of disease of particulate matter for life cycle impact assessment. Air Quality, Atmosphere and Health, 8, 29–46.

    Article  CAS  Google Scholar 

  • Guérin-Schneider, L., Tsanga-Tabi, M., Roux, P., Catel, L., & Biard, Y. (2018). How to better include environmental assessment in public decision-making: lessons from the use of an LCA-calculator for wastewater systems. Journal of Cleaner Production, 187, 1057–1068.

    Article  Google Scholar 

  • Hao, X., Wang, X., Liu, R., Li, S., van Loosdrecht, M.C.M., Jiang, H., (2019). Environmental impacts of resource recovery from wastewater treatment plants. Water Research. https://doi.org/10.1016/j.watres.2019.05.068.

    Article  CAS  Google Scholar 

  • Humbert, S., Schryver, A. D., Bengoa, X., Margni, M., Jolliet, O. (2014). IMAPACT2002 + User Guide (Draft for version Q2.21(version adadpted by Quantis)). http://www.quantisintl.com/pdf/IMPACT2002 UserGuide for vQ2. 21.pdf. (Accessed 10 March 2019).

  • Jensen, A. A., & Remmen, A. (2005). LIFE CYCLE MANAGEMENT, A BRIDGE TO MORE SUSTAINABLE PRODUCTS. UNEP in collaboration with the Society for the Environmental Sustainability (SETAC). Paris.

  • Jeon, S. I., Park, H. R., Yeo, J. G., Yang, S., Cho, C. H., Han, M. H., & Kim, D. K. (2013). Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy & Environmental Science, 6(5), 1471–1475.

    Article  CAS  Google Scholar 

  • Jolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., & Rosenbaum, R. (2003). IMPACT 2002+: a new life cycle impact assessment methodology. International Journal of Life Cycle Assesment, 8(6), 324–330.

    Article  Google Scholar 

  • Luo, W., Phan, H. V., Xie, M., Hai, F. I., Price, W. E., Elimelech, M., & Nghiem, L. D. (2017). Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: biological stability, membrane fouling, and contaminant removal. Water Research, 109, 122–134.

    Article  CAS  Google Scholar 

  • Munirasu, S., Haija, M. A., & Banat, F. (2016). Use of membrane technology for oil field and refinery produced water treatment—a review. Process Safety and Environmental Protection, 100, 183–202.

    Article  CAS  Google Scholar 

  • Nikooe, N., & Saljoughi, E. (2017). Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution. Applied Surface Science, 413, 41–49.

    Article  CAS  Google Scholar 

  • Omosebi, A., Gao, X., Landon, J., & Liu, K. (2014). Asymmetric electrode configuration for enhanced membrane capacitive deionization. ACS Applied Materials & Interfaces, 6(15), 12640–12649.

    Article  CAS  Google Scholar 

  • Oren, Y. (2008). Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review). Desalination, 228(1–3), 10–29.

    Article  CAS  Google Scholar 

  • Paraskeva, C. A., Papadakis, V. G., Kanellopoulou, D. G., Koutsoukos, P. G., & Angelopoulos, K. C. (2007a). Membrane filtration of olive mill wastewater and exploitation of its fractions. Water Environment Research, 79(4), 421–429.

    Article  CAS  Google Scholar 

  • Paraskeva, C. A., Papadakis, V. G., Tsarouchi, E., Kanellopoulou, D. G., & Koutsoukos, P. G. (2007b). Membrane processing for olive mill wastewater fractionation. Desalination, 213(1–3), 218–229.

    Article  CAS  Google Scholar 

  • Pinheiro, H. M., Touraud, E., & Thomas, O. (2004). Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes and Pigments, 61(2), 121–139.

    Article  CAS  Google Scholar 

  • Porada, S., Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388–1442.

    Article  CAS  Google Scholar 

  • Qi, S., Wang, R., Chaitra, G. K. M., Torres, J., Hu, X., & Fane, A. G. (2016). Aquaporin-based biomimetic reverse osmosis membranes: stability and long term performance. Journal of Membrane Science, 508, 94–103.

    Article  CAS  Google Scholar 

  • Renou, S., Thomas, J. S., Aoustin, E., & Pons, M. N. (2008). Influence of impact assessment methods in wastewater treatment LCA. Journal of Cleaner Production, 16(10), 1098–1105.

    Article  Google Scholar 

  • Saad, M., & Tahir, H. (2017). Synthesis of carbon loaded γ-Fe2O3 nanocomposite and their applicability for the selective removal of binary mixture of dyes by ultrasonic adsorption based on response surface methodology. Ultrasonics Sonochemistry, 36, 393–408.

    Article  CAS  Google Scholar 

  • Scientific Applications International Corporation (SAIC), & Curran, M. A. (2006). Life-cycle assessment: principles and practice (pp. 1–80). Cincinnati: National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.

  • Singh, R. L., Singh, P. K., & Singh, R. P. (2015). Enzymatic decolorization and degradation of azo dyes–a review. International Biodeteretation & Biodegredation, 104, 21–31.

    Article  CAS  Google Scholar 

  • Tang, C. Y., Fu, Q. S., Robertson, A. P., Criddle, C. S., & Leckie, J. O. (2006). Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environmental Science & Technology, 40(23), 7343–7349.

    Article  CAS  Google Scholar 

  • UNEP (United Nations Environment Programme) (2006). Background report for a UNEP guide to life cycle management-a bridge to sustainable products.

  • Vajnhandl, S., & Valh, J. V. (2014). The status of water reuse in European textile sector. Journal of Environmental Management, 141, 29–35.

    Article  Google Scholar 

  • Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93(1), 154–168.

    Article  CAS  Google Scholar 

  • Vourch, M., Balannec, B., Chaufer, B., & Dorange, G. (2008). Treatment of dairy industry wastewater by reverse osmosis for water reuse. Desalination, 219(1–3), 90–202.

    Google Scholar 

  • Wang, R., Jin, X., Wang, Z., Gu, W., Wei, Z., Huang, Y., & Jin, P. (2018). A multilevel reuse system with source separation process for printing and dyeing wastewater treatment: a case study. Bioresource Technology, 247, 1233–1241.

    Article  CAS  Google Scholar 

  • Welgemoed, T. J., & Schutte, C. F. (2005). Capacitive deionization technology™: an alternative desalination solution. Desalination, 183(1–3), 327–340.

    Article  CAS  Google Scholar 

  • Yu, T. H., Shiu, H. Y., Lee, M., Chiueh, P. T., & Hou, C. H. (2016). Life cycle assessment of environmental impacts and energy demand for capacitive deionization technology. Desalination, 399, 53–60.

    Article  CAS  Google Scholar 

  • Zhao, Y., Wang, Y., Wang, R., Wu, Y., Xu, S., & Wang, J. (2013). Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes. Desalination, 324, 127–133.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afsin Y. Cetinkaya.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetinkaya, A.Y., Bilgili, L. Life Cycle Comparison of Membrane Capacitive Deionization and Reverse Osmosis Membrane for Textile Wastewater Treatment. Water Air Soil Pollut 230, 149 (2019). https://doi.org/10.1007/s11270-019-4203-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4203-0

Keywords

Navigation