Skip to main content

Advertisement

Log in

Soil Nitrogen and Mercury Dynamics Seven Decades After a Fire Disturbance: a Case Study at Acadia National Park

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Forest soils (mainly soil organic carbon) play an important role in the retention of nitrogen and mercury, and loss of the forest floor during wildfires can stimulate N and Hg losses. In this paper, we investigate long-term impacts of forest fire on soil N and Hg concentrations at Acadia National Park (ANP) in Maine. Acadia National Park experienced a severe fire in 1947. Within the national park, Hadlock Brook watershed was left unburned, whereas most of Cadillac Brook watershed was intensely burned, with substantial loss of the forest floor. Post-fire regeneration in Cadillac was mostly as hardwood species, whereas vegetation in Hadlock remained predominantly softwood. We sampled soils in both watersheds in 2015, approximately 70 years after the fire. The soils were analyzed for total carbon (TC), total nitrogen (TN), total mercury (THg), and methylmercury (MeHg) content. Compared to Hadlock, Cadillac soils had ~ 50% lower TC, ~ 40% lower TN, and ~ 50% lower THg content, reflecting the loss of forest floor 70 years ago. Methylmercury concentrations in Cadillac were approximately 2 times the concentrations in Hadlock, indicating that conditions were more conducive to methylation, potentially due to differences in forest type. Long-term comparisons of stream DOC, NO3, and THg concentrations between the two watersheds demonstrated that concentrations were significantly lower in Cadillac Brook, reflecting greater retention in Cadillac and a legacy of lower atmospheric deposition in the hardwood as compared to softwood watershed. This study provides insights on the multi-decadal recovery from a stand-replacing disturbance and underscores the persistence of altered soil biogeochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen, E. W., Prepas, E. E., Gabos, S., Strachan, W. M., & Zhang, W. (2005). Methyl mercury concentrations in macroinvertebrates and fish from burned and undisturbed lakes on the Boreal Plain. Canadian Journal of Fisheries and Aquatic Sciences, 62(9), 1963–1977. https://doi.org/10.1139/f05-103.

    Article  CAS  Google Scholar 

  • Amirbahman, A., Reid, A. L., Haines, T. A., Kahl, J. S., & Arnold, C. (2002). Association of methylmercury with dissolved humic acids. Environmental Science and Technology, 36(4), 690–695. https://doi.org/10.1021/es011044q.

    Article  CAS  Google Scholar 

  • Amirbahman, A., Ruck, P. L., Fernandez, I. J., Haines, T. A., & Kahl, J. S. (2004). The effect of fire on mercury cycling in the soils of forested watersheds: Acadia National Park, Maine, U.S.A. Water, Air, & Soil Pollution, 152(1–4), 315–331. https://doi.org/10.1023/B:WATE.0000015369.02804.15.

    Article  Google Scholar 

  • Bank, M. S., Burgess, J. R., Evers, D. C., & Loftin, C. S. (2007). Mercury contamination of biota from Acadia National Park, Maine: a review. Environmental Monitoring and Assessment, 126(1–3), 105–115. https://doi.org/10.1007/s10661-006-9324-4.

    Article  CAS  Google Scholar 

  • Bélanger, N., Côté, B., Fyles, J. W., Courchesne, F., & Hendershot, W. H. (2004). Forest regrowth as the controlling factor of soil nutrient availability 75 years after fire in a deciduous forest of Southern Quebec. Plant and Soil, 262(1–2), 363–372. https://doi.org/10.1023/B:PLSO.0000037054.21561.85.

    Article  Google Scholar 

  • Benoit, J. M. J., Gilmour, C. C. C., Heyes, A., Mason, R., & Miller, C. (2003). Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. ACS Symposium, 835, 1–33. https://doi.org/10.1021/bk-2003-0835.ch019.

    Article  CAS  Google Scholar 

  • Biswas, A., Blum, J. D., & Keeler, G. J. (2008). Mercury storage in surface soils in a Central Washington forest and estimated release during the 2001 Rex Creek Fire. Science of the Total Environment, 404(1), 129–138. https://doi.org/10.1016/j.scitotenv.2008.05.043.

    Article  CAS  Google Scholar 

  • Booth, M. S., Stark, J. M., & Rastetter, E. (2005). Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecological Monographs, 75(2), 139–157. https://doi.org/10.1890/04-0988.

    Article  Google Scholar 

  • Butler, T. J., Cohen, M. D., Vermeylen, F. M., Likens, G. E., Schmeltz, D., & Artz, R. S. (2008). Regional precipitation mercury trends in the eastern USA, 1998-2005: declines in the Northeast and Midwest, no trend in the southeast. Atmospheric Environment, 42(7), 1582–1592. https://doi.org/10.1016/j.atmosenv.2007.10.084.

    Article  CAS  Google Scholar 

  • Caldwell, C. A., Canavan, C. M., & Bloom, N. S. (2000). Potential effects of forest fire and storm flow on total mercury and methylmercury in sediments of an arid-lands reservoir. Science of the Total Environment, 260(1–3), 125–133. https://doi.org/10.1016/S0048-9697(00)00554-4.

    Article  CAS  Google Scholar 

  • Carrara, J. E., Walter, C. A., Hawkins, J. S., Peterjohn, W. T., Averill, C., & Brzostek, E. R. (2018). Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization. Global Change Biology, (June 2017). https://doi.org/10.1111/gcb.14081.

    Article  Google Scholar 

  • Certini, G. (2005). Effects of fire on properties of forest soils: a review. Oecologia, 143(1), 1–10. https://doi.org/10.1007/s00442-004-1788-8.

    Article  Google Scholar 

  • Covington, W. W. (1981). Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwoods. Ecology, 62(1), 41–48. https://doi.org/10.2307/1936666.

    Article  Google Scholar 

  • Davidson, E. A., David, M. B., Galloway, J. N., Goodale, C. L., Haeuber, R., Harrison, J. A., et al. (2011). Excess nitrogen in the U.S. environment: trends, risks, and solutions. Issues in Ecology, (15), 16 pp

  • Dittman, J. A., Shanley, J. B., Driscoll, C. T., Aiken, G. R., Chalmers, A. T., Towse, J. E., & Selvendiran, P. (2010). Mercury dynamics in relation to dissolved organic carbon concentration and quality during high flow events in three northeastern U.S. streams. Water Resources Research, 46(7), 1–16. https://doi.org/10.1029/2009WR008351.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Whitall, D., Aber, J. D., Boyer, E. W., Castro, M., Cronan, C. S., et al. (2003). Nitrogen pollution in the northeastern United States: sources, effects, and management options. Bioscience, 53(4), 357–374. https://doi.org/10.1641/0006-3568(2003)053[0357:NPITNU]2.0.CO;2

    Article  Google Scholar 

  • Driscoll, C. T., Han, Y.-J., Chen, C. Y., Evers, D. C., Lambert, K. F., Holsen, T. M., et al. (2007). Mercury contamination in forest and freshwater ecosystems in the northeastern United States. BioScience, 57(1), 17–28. https://doi.org/10.1641/B570106.

    Article  Google Scholar 

  • Eaton, A.D., Clesceri, L.S., Greenberg, A.E., (1995). Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, Washington, DC.

  • Eklöf, K., Schelker, J., Sørensen, R., Meili, M., Laudon, H., Von Brömssen, C., & Bishop, K. (2014). Impact of forestry on total and methyl-mercury in surface waters: Distinguishing effects of logging and site preparation. Environmental Science and Technology, 48(9), 4690–4698. https://doi.org/10.1021/es404879p.

    Article  CAS  Google Scholar 

  • Eklöf, K., Bishop, K., Bertilsson, S., Björn, E., Buck, M., Skyllberg, U., et al. (2018). Formation of mercury methylation hotspots as a consequence of forestry operations. Science of the Total Environment, 613–614, 1069–1078. https://doi.org/10.1016/j.scitotenv.2017.09.151.

    Article  CAS  Google Scholar 

  • Evers, D. C., Han, Y.-J., Driscoll, C. T., Kamman, N. C., Goodale, M. W., Lambert, K. F., et al. (2007). Biological mercury hotspots in the northeastern United States and southeastern Canada. BioScience, 57(1), 29–43. https://doi.org/10.1641/B570107.

    Article  Google Scholar 

  • Fernandez, I. J., Rustad, L. E., Norton, S. A., Kahl, J. S., & Cosby, B. J. (2003). Experimental acidification causes soil base-cation depletion at the Bear Brook Watershed in Maine. Soil Science Society of America Journal, 67(6), 1909–1919. https://doi.org/10.2136/sssaj2003.1909.

    Article  CAS  Google Scholar 

  • Ferretti, M., Calderisi, M., Marchetto, A., Waldner, P., Thimonier, A., Jonard, M., et al. (2015). Variables related to nitrogen deposition improve defoliation models for European forests. Annals of Forest Science, 72(7), 897–906. https://doi.org/10.1007/s13595-014-0445-6.

    Article  Google Scholar 

  • Fitzhugh, R. D., Lovett, G. M., & Venterea, R. T. (2003). Biotic and abiotic immobilization of ammonium, nitrite, and nitrate in soils developed under different tree species in the Catskill Mountains, New York, USA. Global Change Biology, 9(11), 1591–1601. https://doi.org/10.1046/j.1365-2486.2003.00694.x.

    Article  Google Scholar 

  • Fowler, Z. K., Adams, M. B., & Peterjohn, W. T. (2015). Will more nitrogen enhance carbon storage in young forest stands in central Appalachia? Forest Ecology and Management, 337, 144–152. https://doi.org/10.1016/j.foreco.2014.10.023.

    Article  Google Scholar 

  • Friedli, H. R., Radke, L. F., Lu, J. Y., Banic, C. M., Leaitch, W. R., & MacPherson, J. I. (2003). Mercury emissions from burning of biomass from temperate North American forests: laboratory and airborne measurements. Atmospheric Environment, 37(2), 253–267. https://doi.org/10.1016/S1352-2310(02)00819-1.

    Article  CAS  Google Scholar 

  • Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., et al. (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320(May), 889–892. https://doi.org/10.1126/science.1136674.

    Article  CAS  Google Scholar 

  • Garcia, É., & Carignan, R. (1999). Effects of wildfire and clear-cutting in the boreal forest on mercury in zooplankton and fish, 23.

  • Gerson, J. R., & Driscoll, C. T. (2016). Is mercury in a remote forested watershed of the Adirondack Mountains responding to recent decreases in emissions? Environmental Science and Technology, 50(20), 10943–10950. https://doi.org/10.1021/acs.est.6b02127.

    Article  CAS  Google Scholar 

  • Grigal, D. F. (2002). Inputs and outputs of mercury from terrestrial watersheds: a review. Environmental Reviews, 10(1), 1–39. https://doi.org/10.1139/a01-013.

    Article  CAS  Google Scholar 

  • Gundersen, P., Emmett, B. A., Kjønaas, O. J. J., Koopmans, C. J., & Tietema, A. (1998). Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data. Forest Ecology and Management, 101(1–3), 37–55. https://doi.org/10.1016/S0378-1127(97)00124-2.

    Article  Google Scholar 

  • Harris, R. C., Rudd, J. W. M., Amyot, M., Babiarz, C. L., Beaty, K. G., Blanchfield, P. J., et al. (2007). Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. Proceedings of the National Academy of Sciences, 104(42), 16586–16591. https://doi.org/10.1073/pnas.0704186104.

    Article  Google Scholar 

  • Harris, T. B., Rajakaruna, N., Nelson, S. J., Peter, D., & Vaux, P. D. (2012). Stressors and threats to the flora of Acadia National Park, Maine : current knowledge, information gaps, and future directions. Journal of the Torrey Botanical Society, 193(3), 323–344. https://doi.org/10.3159/TORREY-D-11-00086.1.

    Article  Google Scholar 

  • Jagels, R., Jiang, M., Marden, S., & Carlisle, J. (2002). Red spruce canopy response to acid fog exposure. Atmospheric Research, 64(1–4), 169–178. https://doi.org/10.1016/S0169-8095(02)00089-3.

    Article  CAS  Google Scholar 

  • Jefts, S., Fernandez, I. J., Rustad, L. E., & Dail, D. B. (2004). Decadal responses in soil N dynamics at the Bear Brook Watershed in Maine, USA. Forest Ecology and Management, 189(1–3), 189–205. https://doi.org/10.1016/j.foreco.2003.08.011.

    Article  Google Scholar 

  • Johnson, K. B., Haines, T. A., Kahl, J. S., Norton, S. A., Amirbahman, A., & Sheehan, K. D. (2007). Controls on mercury and methylmercury deposition for two watersheds in Acadia National Park, Maine. Environmental Monitoring and Assessment, 126(1–3), 55–67. https://doi.org/10.1007/s10661-006-9331-5.

    Article  CAS  Google Scholar 

  • Kahl, J. S. J. S., Stoddard, J. L., Haeuber, R., Paulsen, S. G., Birnbaum, R., Deviney, F. A., et al. (2004). Have U.S. surface waters responded to the 1990 Clean Air Act Amendments. Environmental Science and Technology, 38(24), 484A–490A. doi:https://doi.org/10.1021/es040686l.

    Article  CAS  Google Scholar 

  • Kahl, J. S., Nelson, S. J., Fernandez, I. J., Haines, T., Norton, S. A., Wiersma, G. B., et al. (2007). Watershed nitrogen and mercury geochemical fluxes integrate landscape factors in long-term research watersheds at Acadia National Park, Maine, USA. Environmental Monitoring and Assessment, 126(1–3), 9–25. https://doi.org/10.1007/s10661-006-9328-0.

    Article  CAS  Google Scholar 

  • Kelly, E. N., Schindler, D. W., St. Louis, V. L., Donald, D. B., & Vladicka, K. E. (2006). Forest fire increases mercury accumulation by fishes via food web restructuring and increased mercury inputs. Proceedings of the National Academy of Sciences, 103, 19380–19385. https://doi.org/10.1073/pnas.0609798104.

    Article  CAS  Google Scholar 

  • Kelly, C., Schoenholtz, S., & Adams, M. B. (2011). Contrasts in carbon and nitrogen ecosystem budgets in adjacent Norway spruce and Appalachian hardwood watersheds in the Fernow Experimental Forest, West Virginia. Fourth Interagency Conference on Research in the Watersheds, 26–30.

  • Knoepp, J. D., & Vose, J. M. (2007). Regulation of nitrogen mineralization and nitrification in Southern Appalachian ecosystems: separating the relative importance of biotic vs. abiotic controls. Pedobiologia, 51(2), 89–97. https://doi.org/10.1016/j.pedobi.2007.02.002.

    Article  CAS  Google Scholar 

  • Kolka, R., Sturtevant, B., Townsend, P., Miesel, J., Wolter, P., Fraver, S., & DeSutter, T. (2014). Post-fire comparisons of forest floor and soil carbon, nitrogen, and mercury pools with fire severity indices. Soil Science Society of America Journal, 78(S1), S58. https://doi.org/10.2136/sssaj2013.08.0351nafsc.

    Article  Google Scholar 

  • Kolka, R. K., Sturtevant, B. R., Miesel, J. R., Singh, A., Wolter, P. T., Fraver, S., et al. (2017). Emissions of forest floor and mineral soil carbon, nitrogen and mercury pools and relationships with fire severity for the Pagami Creek Fire in the Boreal Forest of northern Minnesota. International Journal of Wildland Fire, 26(4), 296–305. https://doi.org/10.1071/WF16128.

    Article  CAS  Google Scholar 

  • Kopáček, J., Cosby, B. J., Evans, C. D., Hruška, J., Moldan, F., Oulehle, F., et al. (2013). Nitrogen, organic carbon and Sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil microbial processes. Biogeochemistry, 115(1–3), 33–51. https://doi.org/10.1007/s10533-013-9892-7.

    Article  CAS  Google Scholar 

  • Leterme, B., Blanc, P., & Jacques, D. (2014). A reactive transport model for mercury fate in soil—application to different anthropogenic pollution sources. Environmental Science and Pollution Research, 21(21), 12279–12293. https://doi.org/10.1007/s11356-014-3135-x.

    Article  CAS  Google Scholar 

  • Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehmann, C. M. B., et al. (2016). Increasing importance of deposition of reduced nitrogen in the United States. Proceedings of the National Academy of Sciences, 113(21), 5874–5879. https://doi.org/10.1073/pnas.1525736113.

    Article  CAS  Google Scholar 

  • Lovett, G. M., & Goodale, C. L. (2011). A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest. Ecosystems, 14(4), 615–631. https://doi.org/10.1007/s10021-011-9432-z.

    Article  CAS  Google Scholar 

  • Lovett, G. M., Weathers, K. C., Arthur, M. A., & Schultz, J. C. (2004). Nitrogen cycling in a northern hardwood forest: do species matter?, 289–308.

  • Lu, M., Yang, Y., Luo, Y., Fang, C., Zhou, X., Chen, J., et al. (2011). Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis. New Phytologist, 189(4), 1040–1050. https://doi.org/10.1111/j.1469-8137.2010.03563.x.

    Article  CAS  Google Scholar 

  • Lubinski, S., Hop, K., & Gawler, S. (2003). U.S. Geological Survey - National Park Service Vegetation Mapping Program Acadia National Park, Maine. Maine: U.S. Department of the Interior.

    Google Scholar 

  • Lucas, R. W. W., Klaminder, J., Futter, M. N. N., Bishop, K. H. H., Egnell, G., Laudon, H., & Högberg, P. (2011). A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. Forest Ecology and Management, 262(2), 95–104. https://doi.org/10.1016/j.foreco.2011.03.018.

    Article  Google Scholar 

  • McNulty, S. G., Cohen, E. C., Moore Myers, J. A., Sullivan, T. J., & Li, H. (2007). Estimates of critical acid loads and exceedances for forest soils across the conterminous United States. Environmental Pollution, 149(3), 281–292. https://doi.org/10.1016/j.envpol.2007.05.025.

    Article  CAS  Google Scholar 

  • Menne, M. J., Durre, I., Korzeniewski, B., McNeal, S., Thomas, K., Yin, X., et al. (2012a). Global historical climatology network - daily (GHCN-Daily). Asheville: NOAA National Climatic Data Center.

    Google Scholar 

  • Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., & Houston, T. G. (2012b). An overview of the global historical climatology network-daily database. Journal of Atmospheric and Oceanic Technology, 29(7), 897–910. https://doi.org/10.1175/JTECH-D-11-00103.1.

    Article  Google Scholar 

  • Miesel, J. R., Goebel, P. C., Corace, R. G., Hix, D. M., Kolka, R., Palik, B., & Mladenoff, D. (2012). Fire effects on soils in Lake States forests: a compilation of published research to facilitate long-term investigations. Forests, 3(4), 1034–1070. https://doi.org/10.3390/f3041034.

    Article  Google Scholar 

  • Minocha, R., Turlapati, S. A., Long, S., McDowell, W. H., Minocha, S. C., & Millard, P. (2015). Long-term trends of changes in pine and oak foliar nitrogen metabolism in response to chronic nitrogen amendments at Harvard Forest, MA. Tree Physiology, 35(8), 894–909. https://doi.org/10.1093/treephys/tpv044.

    Article  CAS  Google Scholar 

  • Mitchell, M. J., Foster, N. W. W., Shepard, J. P. P., Morrison, I. K., & Morrison, L. K. (1992). Nutrient cycling in Huntington Forest and Turkey Lakes deciduous stands: nitrogen and sulfur. Canadian Journal of Forest Research, 22(4), 457–464. https://doi.org/10.1139/x92-060.

    Article  CAS  Google Scholar 

  • Mitchell, C. P. J., Kolka, R. K., & Fraver, S. (2012). Singular and combined effects of blowdown, salvage logging, and wildfire on forest floor and soil mercury pools. Environmental Science and Technology, 46(15), 7963–7970. https://doi.org/10.1021/es300133h.

    Article  CAS  Google Scholar 

  • Murphy, J. D., Johnson, D. W., Miller, W. W., Walker, R. F., Carroll, E. F., & Blank, R. R. (2006). Wildfire effects on soil nutrients and leaching in a Tahoe Basin watershed. Journal of Environment Quality, 35(2), 479. https://doi.org/10.2134/jeq2005.0144.

    Article  CAS  Google Scholar 

  • National Atmospheric Deposition Program Mercury Deposition Network (MDN) (2018). NADP Program Office, Wisconsin state laboratory of hygiene, 465 Henry Mall, Madison, WI 53706.

  • National Atmospheric Deposition Program National Trends Network (NTN). (2018). NADP Program Office, Wisconsin state laboratory of hygiene, 465 Henry Mall, Madison, WI 53706.

  • Nave, L. E., Vance, E. D., Swanston, C. W., & Curtis, P. S. (2011). Fire effects on temperate forest soil C and N storage. Ecological Applications, 21(4), 1189–1201. https://doi.org/10.1890/10-0660.1.

    Article  Google Scholar 

  • Navrátil, T., Hojdová, M., Rohovec, J., Penížek, V., & Vařilová, Z. (2009). Effect of fire on pools of mercury in forest soil, Central Europe. Bulletin of Environmental Contamination and Toxicology, 83(2), 269–274. https://doi.org/10.1007/s00128-009-9705-9.

    Article  CAS  Google Scholar 

  • Nelson, S. J., Johnson, K. B., Kahl, J. S., Haines, T. A., & Fernandez, I. J. (2007). Mass balances of mercury and nitrogen in burned and unburned forested watersheds at Acadia National Park, Maine, USA. Environmental Monitoring and Assessment, 126(1–3), 69–80. https://doi.org/10.1007/s10661-006-9332-4.

    Article  CAS  Google Scholar 

  • Nelson, S. J., Johnson, K. B., Weathers, K. C., Loftin, C. S., Fernandez, I. J., Kahl, J. S., & Krabbenhoft, D. P. (2008). A comparison of winter mercury accumulation at forested and no-canopy sites measured with different snow sampling techniques. Applied Geochemistry, 23(3), 384–398. https://doi.org/10.1016/j.apgeochem.2007.12.009.

    Article  CAS  Google Scholar 

  • Nelson, S. J., Webster, K. E., Loftin, C. S., & Weathers, K. C. (2013). Shifts in controls on the temporal coherence of throughfall chemical flux in Acadia National Park, Maine, USA. Biogeochemistry, 116(1–3), 147–160. https://doi.org/10.1007/s10533-013-9884-7.

    Article  CAS  Google Scholar 

  • Patel, K., (2018). Nitrogen Cycling During a Period of Environmental Change. Electronic Theses and Dissertations. 2918. https://digitalcommons.library.umaine.edu/etd/2918. Accessed 28 November 2018.

  • Patel, K. F., & Fernandez, I. J. (2018). Nitrogen mineralization in O horizon soils during 27 years of nitrogen enrichment at the Bear Brook Watershed in Maine, USA. Environmental Monitoring and Assessment, 190(9), 563. https://doi.org/10.1007/s10661-018-6945-3.

    Article  CAS  Google Scholar 

  • Patterson, W. A., Saunders, K. E., & Horton, L. J. (1983). Fire regimes of the coastal Maine forests of Acadia National Park. Report OSS 83–3, U.S.D.I. National Park Service, North Atlantic Region: Office of Scientific Programs, 359 pp.

  • Pellegrini, A. F. A., Ahlström, A., Hobbie, S. E., Reich, P. B., Nieradzik, L. P., Staver, A. C., et al. (2018). Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature, 553(7687), 194–198. https://doi.org/10.1038/nature24668.

    Article  CAS  Google Scholar 

  • Richardson, J. B., Petrenko, C. L., & Friedland, A. J. (2017). Organic horizon and mineral soil mercury along three clear-cut forest chronosequences across the northeastern USA. Environmental Science and Pollution Research, 24(36), 27994–28005. https://doi.org/10.1007/s11356-017-0356-9.

    Article  CAS  Google Scholar 

  • Rimmer, C. C., Miller, E. K., McFarland, K. P., Taylor, R. J., & Faccio, S. D. (2010). Mercury bioaccumulation and trophic transfer in the terrestrial food web of a montane forest. Ecotoxicology, 19(4), 697–709. https://doi.org/10.1007/s10646-009-0443-x.

    Article  CAS  Google Scholar 

  • Ross, D. S., Bailey, S. W., Lawrence, G. B., Shanley, J. B., Fredriksen, G., Jamison, A. E., & Brousseau, P. A. (2011). Near-surface soil carbon, carbon/nitrogen ratio, and tree species are tightly linked across Northeastern United States watersheds. Forest Science, 57(6), 460–469.

    Google Scholar 

  • Rothstein, D. E., Yermakov, Z., & Buell, A. L. (2004). Loss and recovery of ecosystem carbon pools following stand-replacing wildfire in Michigan jack pine forests. Canadian Journal of Forest Research, 34(9), 1908–1918. https://doi.org/10.1139/x04-063.

    Article  Google Scholar 

  • Schauffler, M., Nelson, S. J., Kahl, J. S., Jacobson, G. L., Haines, T. A., Patterson, W. A., & Johnson, K. B. (2007). Paleoecological assessment of watershed history in PRIMENet watersheds at Acadia National Park, USA. Environmental Monitoring and Assessment, 126(1–3), 39–53. https://doi.org/10.1007/s10661-006-9330-6.

    Article  CAS  Google Scholar 

  • Schleppi, P., Muller, N., Feyen, H., Papritz, A., Bucher, J. B., & Flühler, H. (1998). Nitrogen budgets of two small experimental forested catchments at Alptal, Switzerland. Forest Ecology and Management, 101(1–3), 177–185. https://doi.org/10.1016/S0378-1127(97)00134-5.

    Article  Google Scholar 

  • Schlüter, K. (2000). Review: evaporation of mercury from soils. An integration and synthesis of current knowledge. Environmental Geology, 39(7), 3–4. https://doi.org/10.1007/s002540050005.

    Article  Google Scholar 

  • Schuster, P. F., Shanley, J. B., Marvin-Dipasquale, M., Reddy, M. M., Aiken, G. R., Roth, D. A., et al. (2008). Mercury and organic carbon dynamics during runoff episodes from a northeastern USA watershed. Water, Air, and Soil Pollution, 187(1–4), 89–108. https://doi.org/10.1007/s11270-007-9500-3.

    Article  CAS  Google Scholar 

  • Smith-Downey, N. V., Sunderland, E. M., & Jacob, D. J. (2010). Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: insights from a new global model. Journal of Geophysical Research: Biogeosciences, 115(3), 1–11. https://doi.org/10.1029/2009JG001124.

    Article  CAS  Google Scholar 

  • Smithwick, E. A. H., Eissenstat, D. M., Lovett, G. M., Bowden, R. D., Rustad, L. E., & Driscoll, C. T. (2013). Root stress and nitrogen deposition: consequences and research priorities. New Phytologist, 197(3), 712–719. https://doi.org/10.1111/nph.12081.

    Article  CAS  Google Scholar 

  • Sollins, P., Glassman, C., Paul, E. A., Swanston, C. W., Lajtha, K., Heil, J. W., & Elliott, E. T. (1999). Soil carbon and nitrogen pools and fractions. In G. P. Robertson, D. C. Coleman, C. S. Bledsoe, & P. Sollins (Eds.), Standard soil methods for Long-term ecological research (pp. 89–105). New York, NY: Oxford University Press.

    Google Scholar 

  • Templer, P. H., Mack, M. C., Chapin, F. S., Christenson, L. M., Compton, J. E., Crook, H. D., et al. (2012). Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15 N tracer field studies. Ecology, 93(8), 1816–1829. https://doi.org/10.1890/11-1146.1.

    Article  CAS  Google Scholar 

  • Thomas, R. Q., Canham, C. D., Weathers, K. C., & Goodale, C. L. (2010). Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 3(1), 13–17. https://doi.org/10.1038/ngeo721.

    Article  CAS  Google Scholar 

  • Treseder, K. K. (2008). Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecology Letters, 11(10), 1111–1120. https://doi.org/10.1111/j.1461-0248.2008.01230.x.

    Article  Google Scholar 

  • Turetsky, M. R., Harden, J. W., Friedli, H. R., Flannigan, M., Payne, N., Crock, J., & Radke, L. (2006). Wildfires threaten mercury stocks in northern soils. Geophysical Research Letters, 33(16), 1–6. https://doi.org/10.1029/2005GL025595.

    Article  Google Scholar 

  • Vesterdal, L., Schmidt, I. K., Callesen, I., Nilsson, L. O., & Gundersen, P. (2008). Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management, 255(1), 35–48. https://doi.org/10.1016/j.foreco.2007.08.015.

    Article  Google Scholar 

  • Vesterdal, L., Clarke, N., Sigurdsson, B. D., & Gundersen, P. (2013). Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management, 309, 4–18. https://doi.org/10.1016/j.foreco.2013.01.017.

    Article  Google Scholar 

  • Weathers, K. C., Simkin, S. M. S., Lovett, G. M., & Lindberg, S. S. E. (2006). Empirical modeling of atmospheric deposition in mountainous landscapes. Ecological Applications, 16(4), 1590–1607. https://doi.org/10.1890/1051-0761(2006)016[1590:EMOADI]2.0.CO;2.

    Article  Google Scholar 

  • Webster, J. P., Kane, T. J., Obrist, D., Ryan, J. N., & Aiken, G. R. (2016). Estimating mercury emissions resulting from wildfire in forests of the Western United States. Science of the Total Environment, 568, 578–586. https://doi.org/10.1016/j.scitotenv.2016.01.166.

    Article  CAS  Google Scholar 

  • Wiersma, G. B., Elvir, J. A., & Eckhoff, J. D. (2007). Forest vegetation monitoring and foliar chemistry of red spruce and red maple at Acadia National Park in Maine. Environmental Monitoring and Assessment, 126(1–3), 27–37. https://doi.org/10.1007/s10661-006-9329-z.

    Article  CAS  Google Scholar 

  • Witt, E. L., Kolka, R. K., Nater, E. a., & Wickman, T. R. (2009). Forest fire effects on mercury deposition in the boreal forest. Environmental Science & Technology, 43, 1776–1782. https://doi.org/10.1021/es802634y.

    Article  CAS  Google Scholar 

  • Woodruff, L. G., & Cannon, W. F. (2010). Immediate and long-term fire effects on total mercury in forests soils of northeastern Minnesota. Environmental Science and Technology, 44, 5371–5376. https://doi.org/10.1021/es100544d.

    Article  CAS  Google Scholar 

  • Yanai, R. D., Currie, W. S., & Goodale, C. L. (2003). Soil carbon dynamics after forest harvest: an ecosystem paradigm reconsidered. Ecosystems, 6(3), 197–212. https://doi.org/10.1007/s10021-002-0206-5.

    Article  CAS  Google Scholar 

  • Yanai, R. D., Vadeboncoeur, M. A., Hamburg, S. P., Arthur, M. A., Fuss, C. B., Groffman, P. M., et al. (2013). From missing source to missing sink: long-term changes in the nitrogen budget of a northern hardwood forest. Environmental Science & Technology, 47(20), 11440–11448. https://doi.org/10.1021/es4025723.

    Article  CAS  Google Scholar 

  • Yang, Y., Luo, Y., & Finzi, A. C. (2011). Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytologist, 190(4), 977–989. https://doi.org/10.1111/j.1469-8137.2011.03645.x.

    Article  CAS  Google Scholar 

  • Yu, X., Driscoll, C. T., Warby, R. A. F., Montesdeoca, M., & Johnson, C. E. (2014). Soil mercury and its response to atmospheric mercury deposition across the northeastern United States. Ecological Applications, 24(4), 812–822. https://doi.org/10.1890/13-0212.1.

    Article  Google Scholar 

  • Zak, D. R., Groffman, P. M., Pregitzer, K. S., Christensen, S., & Tiedje, M. (1990). The vernal dam : plant-microbe competition for nitrogen in northern hardwood forests, 71(2), 651–656.

  • Zhang, Y., Jacob, D. J., Horowitz, H. M., Chen, L., Amos, H. M., Krabbenhoft, D. P., et al. (2016). Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proceedings of the National Academy of Sciences of the United States of America, 113(3), 526–531. https://doi.org/10.1073/pnas.1516312113.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Cheryl Spencer and Mike Handley for the assistance with field and laboratory work, and Tsutomu Ohno’s inputs in designing the study. We also thank Nina Caputo, Tyler Coleman, and Cheyenne Adams for their help in the field and laboratory, and Emma Albee for her efforts in the permit process for this research. This is MAFES publication 3651.

Funding

This research was supported by funding from the Maine Agricultural and Forest Experiment Station (MAFES #ME0-41507 ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaizad F. Patel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, K.F., Jakubowski, M.D., Fernandez, I.J. et al. Soil Nitrogen and Mercury Dynamics Seven Decades After a Fire Disturbance: a Case Study at Acadia National Park. Water Air Soil Pollut 230, 29 (2019). https://doi.org/10.1007/s11270-019-4085-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4085-1

Keywords

Navigation