Skip to main content

Advertisement

Log in

Mercury bioaccumulation and trophic transfer in the terrestrial food web of a montane forest

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

We investigated mercury (Hg) concentrations in a terrestrial food web in high elevation forests in Vermont. Hg concentrations increased from autotrophic organisms to herbivores < detritivores < omnivores < carnivores. Within the carnivores studied, raptors had higher blood Hg concentrations than their songbird prey. The Hg concentration in the blood of the focal study species, Bicknell’s thrush (Catharus bicknelli), varied over the course of the summer in response to a diet shift related to changing availability of arthropod prey. The Bicknell’s thrush food web is more detrital-based (with higher Hg concentrations) in early summer and more foliage-based (with lower Hg concentrations) during late summer. There were significant year effects in different ecosystem compartments indicating a possible connection between atmospheric Hg deposition, detrital-layer Hg concentrations, arthropod Hg concentrations, and passerine blood Hg concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Reference

  • Bank MS, Loftin CS, Jung RE (2005) Mercury bioaccumulation in northern two-lined salamanders from streams in the northeastern United States. Ecotoxicology 14:181–191

    Article  CAS  Google Scholar 

  • Bank MS, Crocker J, Connery B, Amirbahman A (2007) Mercury bioaccumulation in green frog (Rana clamitans) and bullfrog (Rana catesbeiana) tadpoles from Acadia National Park, Maine, USA. Environ Toxicol Chem 26:118–125

    Article  CAS  Google Scholar 

  • Bearhop S, Waldron S, Thompson D, Furness R (2000) Bioamplification of mercury in great skua Catharacta skua chicks: the influence of trophic status as determined by stable isotope signatures of blood and feathers. Marine Pollut Bull 40:181–185

    Article  CAS  Google Scholar 

  • Bennett RS, French JB Jr, Rossmann R, Haebler R (2009) Dietary toxicity and tissue accumulation of methylmercury in American kestrels. Arch Environ Con Tox 56:149–156

    Article  CAS  Google Scholar 

  • Bergeron CM, Bodinof CM, Unrine JM, Hopkins WA (2009a) Mercury accumulation along a contamination gradient and nondestructive indices of bioaccumulation in amphibians. Environ Toxicol Chem (in press)

  • Bergeron CM, Bodinof CM, Unrine JM, Hopkins WA (2009b) Bioaccumulation and maternal transfer of mercury and selenium in amphibians. Environ Toxicol Chem (in press)

  • Borror DJ, White RE (1970) A field guide to the insects of America north of Mexico. Houghton Mifflin, Boston

    Google Scholar 

  • Borror DJ, De Long DM, Triplehorn CA (1981) An introduction to the study of insects. Saunders College Publishing, Philadelphia

    Google Scholar 

  • Brasso RL, Cristol DA (2008) Effects of mercury exposure on the reproductive success of tree swallow (Tachycineta bicolor). Ecotoxicology 17:133–141

    Article  CAS  Google Scholar 

  • Burton TM (1976) An analysis of the feeding ecology of salamanders of the Hubbard Brook experimental forest, New Hampshire. J Herpetol 10:187–204

    Article  Google Scholar 

  • Burton TM, Likens GE (1975) Salamander populations and biomass in the Hubbard Brook experimental forest, New Hampshire. Copeia 1975(4):541–546

    Article  Google Scholar 

  • Chen CY, Stemberger RS, Kamman NC, Mayes BM, Folt CL (2005) Patterns of Hg bioaccumulation and transfer in aquatic food webs across multi-lake studies in the northeast US. Ecotoxicology 14:135–147

    Article  CAS  Google Scholar 

  • Collier B, Wallace GE (1989) Aging Catharus thrushes by rectrix shape. J Field Ornithol 60:230–240

    Google Scholar 

  • Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, Monroe AP, White AE (2008) The movement of aquatic mercury through terrestrial food webs. Science 320:335

    Article  CAS  Google Scholar 

  • Demers JD, Driscoll CT, Fahey TJ, Yavitt JB (2007) Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA. Ecol Appl 17:1341–1351

    Article  Google Scholar 

  • Driscoll CT, Han YJ, Chen CY, Evers DC, Lambert KF, Holsen TM, Kamman NC, Munson RK (2007a) Mercury contamination in forest and freshwater ecosystems in the northeastern United States. Bioscience 57:17–28

    Article  Google Scholar 

  • Driscoll CT, Evers D, Lambert KF, Kamman N, Holsen T, Han YJ, Chen C, Goodale W, Butler T, Clair T, Munson R (2007b) Mercury matters: linking mercury science with public policy in the northeastern United States. Hubbard Brook Research Foundation. Science Links Publication Vol. 1, no. 3

  • Evers DC, Duron M (2008) Assessing the availability of methylmercury in terrestrial breeding birds of New York and Pennsylvania, 2005–2006. BRI Report 2008-15

  • Evers DC, Lane OP, Savoy L, Goodale W (2004) Assessing the impacts of methylmercury on piscivorous wildlife using a wildlife criterion value based on the common loon, 1998–2003. Gorham (ME): Maine Department of Environmental Protection, BioDiversity Research Institute. BRI Report 2004–2005

  • Evers DC, Burgess NM, Champoux L, Hoskins B, Major A, Goodale WM, Taylor RJ, Poppenga R, Daigle T (2005) Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America. Ecotoxicology 14:193–221

    Article  CAS  Google Scholar 

  • Evers DC, Savoy LJ, DeSorbo CR, Yates DE, Hanson W, Taylor KM, Siegel LS, Cooley JH Jr, Bank MS, Major A, Munney K, Mower B, Vogel HS, Schoch N, Pokras M, Goodale MW, Fair J (2008) Adverse effects from environmental mercury loads on breeding common loons. Ecotoxicology 17:69–81

    Article  CAS  Google Scholar 

  • Franceschini MD, Lane OP, Evers DC, Reed JM, Hoskins B, Romero LM (2009) The corticosterone stress response and mercury contamination in free-living tree swallows, Tachycineta bicolor. Ecotoxicology 18:514–521

    Article  CAS  Google Scholar 

  • Frisbie MP, Wyman RL (1991) The effects of soil pH on sodium balance in the red-backed salamander, Plethodon cinereus, and three other terrestrial salamanders. Physiol Zool 64:1050–1068

    CAS  Google Scholar 

  • Haines TA, May TW, Finlayson RT, Mierzykowski SE (2003) Factors affecting food chain transfer of mercury in the vicinity of the Nyanza site, Sudbury River, Massachusetts. Environ Monitor Assess 86:211–232

    Article  CAS  Google Scholar 

  • Hall BD, St Louis VL (2004) Methylmercury and total mercury in plant litter decomposing in upland forests and flooded landscapes. Environ Sci Technol 38:5010–5021

    Article  CAS  Google Scholar 

  • Hawley DM, Hallinger KK, Cristol DA (2009) Compromised immune competence in free-living tree swallows exposed to mercury. Ecotoxicology 18:499–503

    Article  CAS  Google Scholar 

  • Heinz GH, Hoffman DJ (2004) Mercury accumulation and loss in mallard eggs. Environ Toxicol Chem 23:222–224

    Article  CAS  Google Scholar 

  • Iowa State University (2009) Bugguide.Net. Iowa State University Entomology Department, Ames, IA. http://www.bugguide.net

  • Lindberg SE (1996) Forests and the global biogeochemical cycle of mercury: the importance of understanding air/vegetation exchange processes. In: Baeyens W, Ebinghaus R, Vasiliev O (eds) Global and regional mercury cycles: sources, fluxes, and mass balances. Kluwer, Dordrecht, pp 359–380

    Google Scholar 

  • Maiorana VC (1977) Tail autonomy, functional conflicts and their resolution by a salamander. Nature 265:533–535

    Article  Google Scholar 

  • Mason RP, Laporte JM, Andres S (2000) Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Arch Environ Con Tox 38:283–297

    Article  CAS  Google Scholar 

  • Mason RP, Abbott ML, Bodaly RA, Bullock OR Jr, Evers DC, Lindberg SE, Murray M, Swain EB, Driscoll CT (2005) Monitoring the response to changing mercury. Environ Sci Technol 39:14A–22A

    Article  CAS  Google Scholar 

  • Miller EK, VanArsdale A, Keeler JG, Chalmers A, Poissant L, Kamman NC, Brulotte R (2005) Estimation and mapping of wet and dry mercury deposition across northeastern North America. Ecotoxicology 14:53–70

    Article  CAS  Google Scholar 

  • Monteiro LR, Furness LW (2001) Kinetics, dose-response, and excretion of methylmercury in free-living adult Cory’s shearwaters. Environ Sci Technol 35:739–746

    Article  CAS  Google Scholar 

  • Morel FMM, Kraepiel AML, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29:543–566

    Article  Google Scholar 

  • Pyle P (1997) Identification to North American birds. Part I: Columbidae to Ploceidae. Slate Creek Press, Bolinas

    Google Scholar 

  • Rasmussen JL, Sealy SG, Cannings RJ (2008) Northern saw-whet owl (Aegolius acadicus). In: Poole A (ed.) The birds of North America online. Cornell Lab of Ornithology, Ithaca; Retrieved from the Birds of North America online: http://www.bna.birds.cornell.edu/bna/species/042

  • Rea AW, Keeler GJ, Scherbatskoy T (1996) The deposition of mercury in throughfall and litterfall in the Lake Champlain watershed: a short-term study. Atmos Environ 30:3257–3263

    Article  CAS  Google Scholar 

  • Rea AW, Lindberg SE, Scherbatskoy T, Keeler GJ (2002) Mercury accumulation in foliage over time in two northern mixed hardwood forests. Water Air Soil Poll 133:49–67

    Article  CAS  Google Scholar 

  • Rich TD, Beardmore CJ, Berlanga H, Blancher PJ, Bradstreet MSW, Butcher GS, Demarest DW, Dunn EH, Hunter WC, Iñigo-Elias EF, Kennedy JA, Martell AM, Panjabi AO, Pashley DN, Rosenberg KV, Rustay CM, Wendt JS, Will TC (2004) Partners in Flight North American Landbird Conservation Plan. Cornell Lab of Ornithology, Ithaca

    Google Scholar 

  • Rimmer CC, McFarland KP, Ellison WG, Goetz JE (2001) Bicknell’s Thrush (Catharus bicknelli). In: Poole A, Gill F (eds) The birds of North America, No. 592. The Birds of North America, Inc, Philadelphia

    Google Scholar 

  • Rimmer CC, McFarland KP, Evers DC, Miller EK, Aubry Y, Busby D, Taylor RJ (2005) Mercury concentrations in Bicknell’s thrush and other insectivorous passerines in montane forests of northeastern North America. Ecotoxicology 14:223–240

    Article  CAS  Google Scholar 

  • Rodenhouse NL, Matthews SN, McFarland KP, Lambert JD, Iverson LR, Prasad A, Sillett TS, Holmes RT (2008) Potential effects of climate change on birds of the Northeast. Mitig Adapt Strat Glob Change 13:517–540

    Article  Google Scholar 

  • SAS Institute, Inc (2009) SAS software version 9.2. SAS Institute, Inc., Cary, North Carolina

  • Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36:12–19

    Article  CAS  Google Scholar 

  • Stebbins RC, Cohen NW (1995) A natural history of amphibians. Princeton University Press, Princeton

    Google Scholar 

  • Systat Software, Inc (2008) SYSTAT 12. Systat Software, Inc., Chicago. http://www.systat.com/SystatProducts.aspx

  • Thompson DR (1996) Mercury in birds and terrestrial mammals. In: Beyer WH, Heinz GH, Redmond-Norwood AW (eds) Environmental contaminants in wildlife: interpreting tissue concentrations. Lewis Publishers, Boca Raton, pp 341–356

    Google Scholar 

  • Tremblay A, Lucotte M, Rheault I (1996) Methylmercury in a benthic food web of two hydroelectric reservoirs and a natural lake of northern Quebec (Canada). Water Air Soil Poll 91:255–269

    Article  CAS  Google Scholar 

  • Tyler G (2005) Changes in the concentrations of major, minor and rare-earth elements during leaf senenscence and decomposition in a Fagus sylvatica forest. Forest Ecol Manag 206:167–177

    Article  Google Scholar 

  • U.S. EPA (1998) Mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry. U. S. Environ. Protection Agency, SW-846 Method 7473

  • Wada H, Cristol DA, McNabb FMA, Hopkins WA (2009) Suppressed adrenocortical responses and thryroid hormone levels in birds near a mercury-contaminated river. Environ Sci Technol 43(15):6031–6038

    Article  CAS  Google Scholar 

  • Wolfe M, Schwarzbach FS, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160

    Article  CAS  Google Scholar 

  • Yates DE, Mayack DT, Munney K, Evers DC, Major A, Kaur T, Taylor RJ (2005) Mercury levels in mink (Mustela vison) and river otter (Lontra canadensis) from northeastern North America. Ecotoxicology 14:263–274

    Article  CAS  Google Scholar 

  • Zheng D-M, Wang Q-C, Zhang Z-S, Zheng N, Zhang X-W (2008) Bioaccumulation of total and methyl mercury by arthropods. Bull Environ Contam Toxicol 81:95–100

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding support from the U.S. Environmental Protection Agency through the University of Vermont for this study. Our ongoing avian research on Stratton Mountain was supported by the Stratton Mountain Resort, Thomas Marshall Foundation, Vermont Monitoring Cooperative, and friends of both the Vermont Center for Ecostudies and the Vermont Institute of Natural Science. We thank the many dedicated field biologists who assisted with collection of these data under frequently difficult conditions. We are grateful to Allan Strong for providing access to unpublished arthropod data from Stratton Mountain. We are indebted to staff of the Texas A&M Trace Element Research Laboratory for conducting all aspects of the mercury analyses. Jason Townsend provided constructive reviews of an early manuscript draft. We are grateful for additional constructive comments from David Evers and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. Rimmer.

Appendix

Appendix

See Table 2.

Table 2 Means, standard deviations, and ranges of Hg concentrations (μg/g) in leaf litter and biotic compartments sampled on Stratton Mountain, Vermont in June and July of 2004–2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rimmer, C.C., Miller, E.K., McFarland, K.P. et al. Mercury bioaccumulation and trophic transfer in the terrestrial food web of a montane forest. Ecotoxicology 19, 697–709 (2010). https://doi.org/10.1007/s10646-009-0443-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-009-0443-x

Keywords

Navigation