Skip to main content
Log in

Pyrogenic Materials-Induced Immobilization of Eu in Aquatic and Soil Systems: Comparative Study

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Pyrogenic materials produced from various input materials and with valuable characteristics such as high porosity, extensive surface area, and mineral composition represent alternative to traditional carbon-based materials in area of contaminant immobilization, aqueous solutions purification, and soil remediation. Intensification of industry and technological processes brings increased use of lanthanides and thus potential risk of lanthanide penetration into soil and aquatic systems. This study examined the roles of three different pyrogenic materials: microcrystalline cellulose-derived pyrogenic materials (MCPM), organic cotton-derived pyrogenic material (OCPM), and sewage sludge-derived pyrogenic material (SSPM) produced in the process of slow pyrolysis at 430 °C in N2 atmosphere as potential Eu immobilization and sorption materials. Produced materials were characterized by determination of wide range physicochemical properties via elemental analysis, SEM, FT-IR, and sorption potential for Eu in batch sorption experiments. The obtained data confirmed that sorption separation of Eu by OCPM, MCPM, and SSPM from aqueous solution is relatively rapid process with reached equilibrium at 24 h. Batch equilibrium experiments revealed maximum sorption capacities 0.602 mg g−1 for MCPM, 1.761 mg g−1 for OCPM, and 2.586 mg g−1 for SSPM. The presence of co-ions such as Al in system reduced sorption potential about more than 50% for all three studied materials. Column leaching test with artificially contaminated soil and 5% (w/w) amendments of pyrogenic materials showed significant retention ability of MCPM, OCPM, and SSPM for mobile Eu forms compared to control soil. Pyrolysis production of pyrogenic materials and their applications as an effective immobilization and separation tools for wide range of xenobiotics can be innovative method in environmental management and waste assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99, 19–33.

    Article  CAS  Google Scholar 

  • Awwad, N. S., Gad, H. M. H., Ahmad, M. I., & Aly, H. F. (2010). Sorption of lanthanum and erbium from aqueous solution by activated carbon prepared from rice husk. Colloids and Surfaces B: Biointerfaces, 81, 539–599.

    Article  CAS  Google Scholar 

  • Azizian, S., & Fallah, N. (2010). A new empirical rate equation for adsorption kinetics at solid/solution interface. Applied Surface Science, 256(17), 5153–5156.

    Article  CAS  Google Scholar 

  • Baldock, J. A., & Smernik, R. J. (2002). Chemical composition and bioavailability of thermally altered Pinus resignosa (Red pine) wood. Organic Geochemistry, 33, 1093–1109.

    Article  CAS  Google Scholar 

  • Blanchard, G., Maunaye, M., & Martin, G. (1984). Removal of heavy metals from waters by means of natural zeolites. Water Research, 18, 1501–1507.

    Article  CAS  Google Scholar 

  • Bouby, M., Lutzenkirchen, J., Dardenne, K., Preocanin, T., Denecke, M. A., Klenze, R., et al. (2010). Sorption of Eu (III) onto titanium dioxide: measurements and modelling. Journal of Colloid and Interface Science, 350, 551–561.

    Article  CAS  Google Scholar 

  • Chen, C. L., Wang, X. K., & Nagatsu, M. (2009). Europium adsorption on multiwall carbon nanotube/iron oxide magnetic composite in the presence of polyacrylic acid. Environmental Science and Technology, 43, 2362–2367.

    Article  CAS  Google Scholar 

  • Cobelo-Garcia, A., Filella, M., Croot, P., Frazzoli, C., Du Laing, G., Ospina-Alvarez, N., et al. (2015). COST action TD1407: network on technology-critical elements (NOTICE)-from environmental processes to human health threats. Environmental Science and Pollution Research, 22(19), 15188–15194.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72(2), 243–248.

    Article  CAS  Google Scholar 

  • EBC (2012) ‘European Biochar Certificate—Guidelines for a Sustainable Production of Biochar.’ European Biochar Foundation (EBC), Arbaz, Switzerland. https://www.european-biochar.org/en/download. Version 6.3E of 14th August 2017. https://doi.org/10.13140/RG.2.1.4658.7043.

  • Enders, A., & Lehmann, J. (2012). Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Communication in Soil Science and Plant Analysis, 43(7), 1042–1052.

    Article  CAS  Google Scholar 

  • Fan, Q. H., Zhang, M. L., Zhang, Y. Y., Ding, K. F., Yang, Z. Q., & Wu, W. S. (2010). Sorption of Eu (III) and Am (III) on attapulgite: effect of pH, ionic strength and fulvic acid. Radiochimica Acta, 98(1), 19–25.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 385–471.

    CAS  Google Scholar 

  • Frišták, V., Pipíška, V., Lesný, J., Soja, G., Friesl-Hanl, W., & Packová, A. (2015). Utilization of biochar sorbents for Cd2+, Zn,2+, and Cu2+ ions separation from aqueous solutions: comparative study. Environmental Monitoring and Assessment, 187, 4093.

    Article  CAS  Google Scholar 

  • Frišták, V., Micháleková-Richveisová, B., Víglašová, E., Ďuriška, L., Galamboš, M., Moreno-Jimenéz, E., et al. (2017). Sorption separation of Eu and As from single-component systems by Fe-modified biochar: kinetic and equilibrium study. Journal of the Iranian Chemical Society, 14(3), 521–530.

    Article  CAS  Google Scholar 

  • Gad, H. M. H., & Awwad, N. S. (2007). Factors affecting on sorption/desorption of Eu (III) using activated carbon. Separation Science and Technology, 42, 1–24.

    Article  CAS  Google Scholar 

  • Hadjittofi, L., Charalambous, S., & Pashalidis, I. (2016). Removal of trivalent samarium from aqueous solutions by activated biochar derived from cactus fibres. Journal of Rare Earths, 34(1), 99–104.

    Article  CAS  Google Scholar 

  • Inan, S., & Altas, Y. (2011). Preparation of zirconium–manganese oxide/polyacrylonitrile (Zr–Mn oxide/PAN) composite spheres and the investigation of Sr (II) sorption by experimental design. Chemical Engineering Journal, 16, 1263–1271.

    Article  CAS  Google Scholar 

  • Karer, J., Wawra, A., Zehetner, F., Dunst, G., Wagner, M., Pavel, P. B., et al. (2015). Effects of biochars and compost mixtures and inorganic additives on immobilication of heavy metals in contaminated soils. Water, Air & Soil Pollution, 226, 342.

    Article  CAS  Google Scholar 

  • Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., et al. (2012). Characterization of slow pyrolysis biochars: effects feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41, 990–1000.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1–39.

    Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of American Chemical Society, 38, 2221–2295.

    Article  CAS  Google Scholar 

  • Lehman, J., & Joseph, S. (2015). Biochar for environmental management: science, technology and implementation. London: Earthscan from Routledge.

    Book  Google Scholar 

  • Lu, H., Zhang, W., Wang, S., Zhuang, L., Yang, Y., & Qiu, R. (2013). Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperature. Journal of Analytical and Applied Pyrolysis, 102, 137–143.

    Article  CAS  Google Scholar 

  • Lu, Z., Hao, Z., Wang, J., & Chen, L. (2016). Efficient removal of europium from aqueous solutions using attapulgite-iron oxide magnetic composites. Journal of Industrial and Engineering Chemistry, 34, 374–381.

    Article  CAS  Google Scholar 

  • OECD (2001) - Guideline 106, OECD Guideline for the testing of chemicals. Adsorption-desoprtion using a batch equilibrium method.

  • Özer, D., Dursun, G., & Özer, A. (2007). Methylene blue adsorption from aqueous solution by dehydrated peanut hull. Journal of Hazardous Materials, (177), 171–179.

  • Palma, L. D., & Mecozzi, R. (2010). Batch and column tests of metal mobilization in soil impacted by landfill leachate. Waste Management, 30, 1594–1599.

    Article  CAS  Google Scholar 

  • Pardo, T., Bernal, M. P., & Clemente, R. (2017). Phytostabilisation of severely contaminated mine tailings using halophytes and field addition of organic and inorganic amendments. Chemosphere, 178, 556–564.

    Article  CAS  Google Scholar 

  • Pipíška, M., Micháleková-Richveisová, B., Frišták, V., Horník, M., Remenárová, L., Stiller, R., et al. (2017). Sorption separation of cobalt and cadmium by straw-derived biochar: a radiometric study. Journal of Radioanalytical and Nuclear Chemistry, 311(1), 85–97.

    Article  CAS  Google Scholar 

  • Shao, D. D., Fan, Q. H., Li, J. X., Niu, Z. W., Wu, W. S., Chen, Y. X., et al. (2009). Removal of Eu (III) from aqueous solution using ZSM-5 zeolite. Microporous and Mesoporous Materials, 123(1–3), 1–9.

    Article  CAS  Google Scholar 

  • Shen, Z., Zhang, Y., Jin, F., McMillan, O., & Al-Tabbaa, A. (2017). Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars. Science of the Total Environment, 609, 1401–1410.

    Article  CAS  Google Scholar 

  • Shtangeeva, I. (2014). Europium and cerium accumulation in wheat and Rye seedlings. Water Air Soil Pollution, 225, 1964.

    Article  CAS  Google Scholar 

  • Sips, R. (1948). On the structure of a catalyst surface. The Journal of Chemical Physics, 16(5), 490–495.

    Article  CAS  Google Scholar 

  • Sizmus, T., Fresno, T., Akgül, G., Frost, H., & Moreno-Jiménez, E. (2017). Biochar modification to enhance sorption of inorganics from water. Bioresource Technology, 246, 34–47.

    Article  CAS  Google Scholar 

  • Sullivan, D. M., & Miller, R. O. (2001). Compost quality attributes, measurements and variability. In P. J. Stofella & B. A. Kahn (Eds.), Compost utilization in horticultural cropping systems (pp. 95–120). Boca Raton: CRC Press.

    Google Scholar 

  • Sun, X., Luo, H., Shannon, L. M., Liu, R., Hou, X., & Dai, S. (2016). Adsorption of rare earth ions using carbonized polydopamine nano carbon shells. Journal of Rare Earths, 34(1), 77–82.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Wartelle, L. H., Klasson, K. T., Fortier, C. A., & Lima, I. M. (2011). Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 59, 2501–2510.

    Article  CAS  Google Scholar 

  • Uhrovčík, J., Gyeváthová, M., & Lesný, J. (2013). Possibility of the spectrophotometric determination of europium by means of Arsenazo III. Nova Biotechnologica et Chimica, 12(2), 93–99.

    Article  Google Scholar 

  • Van Zwieten, L., Kimber, S., Morris, J., Chan, K., Downie, A., Rust, J., et al. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327, 235–246.

    Article  CAS  Google Scholar 

  • Wawra, A., Friel-Hanl, W., Jäger, A., Puschenreiter, M., Soja, G., Reichenauer, T., et al. (2018). Investigations of microbial degradation of polycyclic aromatic hydrocarbons based on 13C-labeled phenanthrene in a soil co-contaminated with trace elements using a plant assisted approach. Environmental Science and Pollution, 26(7), 6364–6377.

    Article  CAS  Google Scholar 

  • Yu, T., Liang, S., & Li, H. (2017). Study of the sorption of Eu (III) onto natural red earth and its solid components by linear and non-linear methods. Bulletin of Korean Chemical Society, 38(2), 155–165.

    Article  CAS  Google Scholar 

  • Zubrik, A., Matik, M., Hredzák, S., Lovás, M., Danková, Z., Kovacova, M., et al. (2017). Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis. Journal of Cleaner Production, 143, 643–653.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the scientific grant agency VEGA of the Ministry of Education, Science, Research, and Sport of Slovak Republic for project support No. 1/0947/16.

Funding

This work was supported by Austrian BMWFW-OeAD-ICM GmbH and Slovak Research and Development Agency under a Project No. SK 02/2016 (IZOCHAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Frišták.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frišták, V., Pipíška, M., Hubeňák, M. et al. Pyrogenic Materials-Induced Immobilization of Eu in Aquatic and Soil Systems: Comparative Study. Water Air Soil Pollut 229, 146 (2018). https://doi.org/10.1007/s11270-018-3800-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3800-7

Keywords

Navigation