Skip to main content
Log in

Sorption separation of Eu and As from single-component systems by Fe-modified biochar: kinetic and equilibrium study

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

A Correction to this article was published on 26 October 2017

This article has been updated

Abstract

The utilization of carbonaceous materials in separation processes of radionuclides, heavy metals and metalloids represents a burning issue in environmental and waste management. The main objective of this study was to characterize the effect of chemical modification of corncob-derived biochar by Fe-impregnations on sorption efficiency of Eu and As as a model compounds of cationic lanthanides and anionic metalloids. The biochar sample produced in slow pyrolysis process at 500 °C before (BC) and after (IBC) impregnation process was characterized by elemental, FTIR, SEM-EDX analysis to confirm the effectiveness of Fe-impregnation process. The basic physico-chemical properties showed differences in surface area and pH values of BC- and IBC-derived sorbents. Sorption processes of Eu and As by BC and IBC were characterized as a time- and initial concentration of sorbate-dependent processes. The sorption equilibrium was reached for both sorbates in 24 h of contact time. Batch equilibrium experiments revealed the increased maximum sorption capacities (Q max) of IBC for As about more than 20 times (Q max BC 0.11 and Q max IBC 2.26 mg g−1). Our study confirmed negligible effect of Fe-impregnation on sorption capacity of biochar for Eu (Q max BC 0.89 and Q max IBC 0.98 mg g−1). The iron-impregnation of biochar-derived sorbents can be utilized as a valuable treatment method to produce stable and more effective sorption materials for various xenobiotics separation from liquid wastes and aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 26 October 2017

    Unfortunately, the address of Barbora Micháleková-Richveisová is wrong in the published article. The correct address is given below as number 6.

References

  1. C.A. Kozlowski, J. Kozlowska, W. Pellowski, W. Walkowiak, Separation of cobalt-60, strontium-90 and cesium-137 radioisotopes by competitive transport across polymer inclusion membranes with organophosphorus acids. Desalination 198, 141–148 (2006)

    Article  CAS  Google Scholar 

  2. G. Giakisikli, A.N. Anthemidis, Magnetic materials as sorbents for metal/metalloid preconcetration and/or separation. Anal. Chim. Acta 789, 1–16 (2013)

    Article  CAS  Google Scholar 

  3. T. Mőller, N. Bestaoui, M. Wierzbicki, T. Adams, A. Clearfield, Separation of lanthanum, hafnium, barium and radiotracers yttrium-88 and barium-133 using crystalline zirconium phosphate and phosphate compounds as prospective materials for a Ra-223 radioisotope generator. Appl. Radiat. Isot. 69, 947–954 (2011)

    Article  Google Scholar 

  4. K. Taleb, J. Markovski, M. Milosavljevic, M. Marinovic-Cincovic, J. Rusmirovic, M. Ristic, A. Marinkovic, Efficient arsenic removal by cross-linked macroporous polymer impregnated with hydrous iron-oxide: materials performance. Chem. Eng. J. 279, 66–78 (2015)

    Article  CAS  Google Scholar 

  5. R. Kang, L. Qiu, L. Fang, R. Yu, Y. Chen, X. Lu, X. Luo, A novel magnetic and hydrophilic ion-imprinted polymer as a selective sorbent for the removal of cobalt ions from industrial wastewater. J. Environ. Chem. Eng. 4, 2268–2277 (2016)

    Article  CAS  Google Scholar 

  6. Z. Lu, Z. Hao, J. Wang, L. Chen, Efficient removal of europium from aqueous solutions using attapulgite-iron oxide magnetic composites. J. Ind. Eng. Chem. 34, 374–381 (2016)

    Article  CAS  Google Scholar 

  7. N.N. Popova, L.G. Bykov, G.A. Petuhova, I.G. Tananaev, B.G. Ershov, A study of physicochemical properties of modified carbon nanomaterials intended for sorption extraction of radionuclides I. The influence of the porosity of carbon nanomaterials on their sorption properties with respect to Tc(VII). Prot. Met. Phys. Chem. Surf. 48, 665–670 (2012)

    Article  CAS  Google Scholar 

  8. M. Galamboš, M. Daňo, E. Víglašová, I. Krivosudský, O. Rosskopfová, I. Novák, D. Berek, P. Rajec, Effect of competing anions on pertechnetate adsorption by activated carbon. J. Radioanal. Nucl. Chem. 304, 1219–1224 (2015)

    Article  Google Scholar 

  9. P. Rajec, O. Rosskopfová, M. Galamboš, V. Frišták, G. Soja, A. Dafnomili, F. Noli, A. Ðukić, L. Matović, Sorption and desorption of pertechnetate on biochar under static batch and dynamic conditions. J. Radioanal. Nucl. Chem. (2016). doi:10.1007/s10967-016-4811-8

    Google Scholar 

  10. E. Víglašová, M. Daňo, M. Galamboš, O. Rosskopfová, P. Rajec, I. Novák, Column studies for the separation of 99mTc using activated carbon. J. Radioanal. Nucl. Chem. 307, 591–597 (2016)

    Article  Google Scholar 

  11. J. Lehmann, S. Joseph, Biochar for environmental management: science, technology and implementation (Earthscan from Routledge, London, 2015)

    Google Scholar 

  12. V. Frišták, M. Pipíška, J. Lesný, G. Soja, W. Friesl-Hanl, A. Packová, Utilization of biochar sorbents for Cd2+, Zn2+ and Cu2+ ions separation from aqueous solutions: comparative study. Environ. Monit. Assess. 187, 4093 (2015)

    Article  Google Scholar 

  13. V. Frišták, W. Friesl-Hanl, M. Pipíška, M. Richveisová-Micháleková, G. Soja, The response of artificial aging to sorption properties of biochar for potentially toxic heavy metals. Nova Biotechnol. Chim. 13, 137–147 (2014)

    Google Scholar 

  14. V. Frišták, W. Friels-Hanl, A. Wawra, M. Pipíška, G. Soja, Effect of biochar artificial ageing on Cd and Cu sorption characteristics. J. Geochem. Explor. 159, 178–184 (2015)

    Article  Google Scholar 

  15. X.J. Zuo, Z. Liu, M. Chen, Effect of H2O2 concentration on copper removal using the modified hydrothermal biochar. Bioresour. Technol. 207, 262–267 (2016)

    Article  CAS  Google Scholar 

  16. B. Chen, Z. Chen, S. Li, A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour. Technol. 102, 716–723 (2011)

    Article  CAS  Google Scholar 

  17. C.A. Takaya, L.A. Fletcher, S. Singh, U.C. Okwuosa, A.B. Ross, Recovery of phosphate with chemically modified biochars. J. Environ. Chem. Eng. 4, 1156–1165 (2016)

    Article  CAS  Google Scholar 

  18. B. Micháleková-Richveisová, V. Frišták, M. Pipíška, L. Ďuriška, E. Moreno-Jimenéz, G. Soja, Iron-impregnated biochars as effective phosphate sorption materials. Environ. Sci. Pollut. Res. (2016). doi:10.1007/s11356-016-7820-9

    Google Scholar 

  19. L. Trakal, V. Veselská, I. Šafařík, M. Vítková, S. Číhalová, M. Komárek, Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour. Technol. 203, 318–324 (2016)

    Article  CAS  Google Scholar 

  20. M. Lawrinenko, D.A. Laird, Anion exchange capacity of biochar. Green Chem. 17, 4628–4636 (2015)

    Article  CAS  Google Scholar 

  21. A. Enders, J. Lehmann, Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Commun. Soil Sci. Plant 43, 1042–1052 (2012)

    Article  CAS  Google Scholar 

  22. C.A. Nunes, M.C. Guerreiro, Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers. Quim. Nova 34, 472–476 (2011)

    Article  CAS  Google Scholar 

  23. OECD-Guideline 106, OECD Guideline for the Testing of Chemicals. Adsorption–Desorption Using a Batch Equilibrium Method (Organisation for Economic Co-operation and Development (OECD), Paris, 2001)

    Google Scholar 

  24. J. Uhrovčík, M. Gyeváthová, J. Lesný, Possibility of the spectrophotometric determination of europium by means of Arsenazo III. Nova Biotechnol. Chim. 12, 93–99 (2013)

    Google Scholar 

  25. S. Azizian, Kinetic models of sorption: a theoretical analysis. J. Colloid Interface Sci. 276, 47–52 (2004)

    Article  CAS  Google Scholar 

  26. S. Azizian, N. Fallah, A new empirical rate equation for adsorption kinetics at solid/solution interface. Appl. Surf. Sci. 256, 5153–5156 (2010)

    Article  CAS  Google Scholar 

  27. R. Sips, Combined form of Langmuir and Freundlich equations. J. Chem. Phys. 16, 490–495 (1948)

    Article  CAS  Google Scholar 

  28. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010)

    Article  CAS  Google Scholar 

  29. J. Cortés, P. Araya, The Dubinin–Radushkevich–Kaganer equation. J. Chem. Soc. Faraday Trans. 82, 2473–2479 (1986)

    Article  Google Scholar 

  30. J.P. Gustafsson, Visual-MINTEQ, Version 3.0 (Computer Software) (Kungliga Tekniska högskolan, Stockholm, 2013)

    Google Scholar 

  31. X. Hu, Z. Ding, A.R. Zimmerman, S. Wang, B. Gao, Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res. 68, 206–216 (2015)

    Article  CAS  Google Scholar 

  32. J.M. De la Rosa, M. Paneque, A.Z. Miller, H. Knicker, Relating physical and chemical properties of four different bio-chars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Sci. Total Environ. 499, 175–184 (2014)

    Article  Google Scholar 

  33. N. Fiol, I. Villaescusa, M. Martínez, N. Miralles, J. Poch, J. Serarols, Sorption of Ni (II), Cu (II) and Cd (II) from aqueous solution by olive stone waste. Sep. Purif. Technol. 50, 132–140 (2006)

    Article  CAS  Google Scholar 

  34. E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 280, 309–314 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Austrian BMWFW-OeAD-ICM GmbH and Slovak Research and Development Agency under a Project No. SK 02/2016 (IZOCHAR). Part of work was performed within the frame of mobility programme (Ernst Mach Stipendium) supported by Austrian BMWFW-OeAD and Slovak Research and Development Operational Programme (ERDF:26220120014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Frišták.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s13738-017-1221-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frišták, V., Micháleková-Richveisová, B., Víglašová, E. et al. Sorption separation of Eu and As from single-component systems by Fe-modified biochar: kinetic and equilibrium study. J IRAN CHEM SOC 14, 521–530 (2017). https://doi.org/10.1007/s13738-016-1000-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-1000-1

Keywords

Navigation