Kinetic, Thermodynamic, and Adsorption Behavior of Cationic and Anionic Dyes onto Corn Stigmata: Nonlinear and Stochastic Analyses

  • Fatma Mbarki
  • Aida Kesraoui
  • Mongi Seffen
  • Philippe Ayrault
Article
  • 68 Downloads

Abstract

The potential to remove methylene blue (MB) basic dye and indigo carmine (IC) acidic dye, from wastewater treatment systems using corn stigmata through biosorption was investigated in batch experiments. The effects of contact time, solution pH, biosorbent dosage, initial dye concentration, salts, and temperature were sought. Results showed that the maximal uptakes of MB were 106.3 mg g−1 at pH = 7 and 63.7 mg g−1 for IC at pH = 2. In order to determine the properties and surface structure of the biomass physicochemical properties (pHpzc, elemental analysis, Boehm’s titration, and chemical composition), spectral (FTIR analysis) and morphological characteristics (SEM) were investigated. Random distribution of the active sites was described by the new biosorption fractal model of Brouers–Sotolongo. The thermodynamic study demonstrated the favorable character of the biosorption of MB and of IC, which was inhibited by the presence of salts. The elucidation of the biosorption mechanism showed that the biosorption of MB onto corn stigmata was mainly controlled by chemisorption and the biosorption of IC was described by physisorption.

Keywords

Biosorption Corn stigma Dye Kinetics Brouers–Sotolongo Thermodynamic 

Supplementary material

11270_2018_3749_MOESM1_ESM.docx (27 kb)
Fig. SI (DOCX 27 kb)

References

  1. Abdallah, R., & Taha, S. (2012). Biosorption of methylene blue from aqueous solution by nonviable Aspergillus fumigatus. Chemical Engineering Journal, 195–196, 69–76.  https://doi.org/10.1016/j.cej.2012.04.066.CrossRefGoogle Scholar
  2. Agarwal, S., Tyagi, I., Gupta, V. K., Ghasemi, N., Shahivand, M., & Ghasemi, M. (2016). Kinetics, equilibrium studies and thermodynamics of methylene blue adsorption on Ephedra strobilacea saw dust and modified using phosphoric acid and zinc chloride. Journal of Molecular Liquids, 218, 208–218.  https://doi.org/10.1016/j.molliq.2016.02.073.CrossRefGoogle Scholar
  3. Anastopoulos, I., & Kyzas, G. Z. (2015). Composts as biosorbents for decontamination of various pollutants: a review. Water, Air, and Soil Pollution, 226, 61.  https://doi.org/10.1007/s11270-015-2345-2.CrossRefGoogle Scholar
  4. Àngels Olivella, M., Fiol, N., de la Torre, F., Poch, J., & Villaescusa, I. (2012). A mechanistic approach to methylene blue sorption on two vegetable wastes: cork bark and grape stalks. BioResources, 7(3), 3340–3354.Google Scholar
  5. Balarak, D., Jaafari, J., Hassani, G., Mahdavi, Y., Tyagi, I., Agarwal, S., & Gupta, V. K. (2015). The use of low-cost adsorbent (Canola residues) for the adsorption of methylene blue from aqueous solution: isotherm, kinetic and thermodynamic studies. Colloids and Interface Science Communications, 7, 16–19.  https://doi.org/10.1016/j.colcom.2015.11.004.CrossRefGoogle Scholar
  6. Balistrieri, L. S., & Murray, J. w. (1981). The surface chemistry of goethite (alpha FeOOH) in major ion seawater. American Journal of Sciences, 281, 788–806.Google Scholar
  7. Hamissa, A. M. B., Brouers, F., Ncibi, M. C., & Seffen, M. (2013). Kinetic modeling study on methylene blue sorption onto Agave americana fibers: fractal kinetics and regeneration studies. Separation Science and Technology, 48, 2834–2842.  https://doi.org/10.1080/01496395.2013.809104.CrossRefGoogle Scholar
  8. Boehm, H. P. (1994). Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 32(5), 759–769.  https://doi.org/10.1016/0008-6223(94)90031-0.CrossRefGoogle Scholar
  9. Boudechiche, N., Mokaddem, H., Sadaoui, Z., & Trari, M. (2016). Biosorption of cationic dye from aqueous solutions onto lignocellulosic biomass (Luffa cylindrica): characterization, equilibrium, kinetic and thermodynamic studies. International Journal of Industrial Chemistry, 7, 167–180.  https://doi.org/10.1007/s40090-015-0066-4.CrossRefGoogle Scholar
  10. Brouers, F., & Al-Musawi, T. J. (2015). On the optimal use of isotherm models for the characterization of biosorption of lead onto algae. Journal of Molecular Liquids, 212, 46–51.  https://doi.org/10.1016/j.molliq.2015.08.054.CrossRefGoogle Scholar
  11. Brouers, F., & Sotolongo-costa, O. (2006). Generalized fractal kinetics in complex systems (application to biophysics and biotechnology). Physica A, 368, 165–175.  https://doi.org/10.1016/j.physa.2005.12.062.CrossRefGoogle Scholar
  12. Brouers, F., Sotolongo, O., Marquez, F., & Pirard, J. P. (2005). Microporous and heterogeneous surface adsorption isotherms arising from levy distributions. Physica A, 349, 271–282.  https://doi.org/10.1016/j.physa.2004.10.032.
  13. Chao, H.-P., & You, S.-J. (2017). Activated carbons from golden shower upon different chemical activation methods: synthesis and characterizations. Adsorption Science & Technology, 0(0),1–19.  https://doi.org/10.1177/0263617416684837.
  14. Daneshvar, E., Vazirzadeh, A., Niazi, A., Sillanpä ä, M., & Bhatnagar, A. (2017). A comparative study of methylene blue biosorption using different modified brown, red and green macroalgae—effect of pretreatment. Chemical Engineering Journal, 307, 435–446.  https://doi.org/10.1016/j.cej.2016.08.093.CrossRefGoogle Scholar
  15. de Almeida, E. J. R., & Corso, C. R. (2016). Acid blue 161: decolorization and toxicity analysis after microbiological treatment. Water, Air, and Soil Pollution, 227, 468.  https://doi.org/10.1007/s11270-016-3042-5.CrossRefGoogle Scholar
  16. de Oliveira Brito, S. M., Andrade, H. M. C., Soares, L. F., & de Azevedo, R. P. (2010). Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions. Journal of Hazardous Materials, 174, 84–92.  https://doi.org/10.1016/j.jhazmat.2009.09.020.CrossRefGoogle Scholar
  17. Foo, K. Y. (2016). Value-added utilization of maize cobs waste as an environmental friendly solution for the innovative treatment of carbofuran. Process Safety and Environmental Protection, 100, 295–304.  https://doi.org/10.1016/j.psep.2016.01.020.CrossRefGoogle Scholar
  18. Freundlich, H. M. (1906). Über die adsorption in losungen. Zeitschrift für Physikalische Chemie, 57, 385–471.Google Scholar
  19. Fu, J., Chen, Z., Wang, M., Liu, S., Zhang, J., Zhang, J., et al. (2015). Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal, 259, 53–61.  https://doi.org/10.1016/j.cej.2014.07.101.CrossRefGoogle Scholar
  20. Garcia-Jaldon, C. (1992). Caractérisation morphologique et chimique du chanvre (Cannabis sativa)/Prétraitement à la vapeur et valorization, Thesis,(Grenoble I University).Google Scholar
  21. Ghaedi, M., Nasab, A. G., Khodadoust, S., Rajabi, M., & Azizian, S. (2014). Application of activated carbon as adsorbents for efficient removal of methylene blue: kinetics and equilibrium study. Journal of Industrial and Engineering Chemistry, 20, 2317–2324.  https://doi.org/10.1016/j.jiec.2013.10.007.CrossRefGoogle Scholar
  22. Gupta, T. B., & Lataye, D. H. (2017). Adsorption of indigo carmine dye onto Acacia nilotica ( Babool ) sawdust activated carbon. Journal of Hazardous,Toxic ,and Radioactive Waste, 21(4), 1–1.  https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000365.CrossRefGoogle Scholar
  23. Gupta, V. K., Pathania, D., Sharma, S., Agarwal, S., & Singh, P. (2013). Remediation of noxious chromium (VI) utilizing acrylic acid grafted lignocellulosic adsorbent. Journal of Molecular Liquids, 177, 343–352.  https://doi.org/10.1016/j.molliq.2012.10.017.CrossRefGoogle Scholar
  24. Ho, Y. S., & Mckay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering, 70, 115–124.CrossRefGoogle Scholar
  25. Hosni, K., & Srasra, E. (2010). Evaluation of phosphate removal from water by calcined-LDH synthesized from the dolomite. Colloid Journal, 72(3), 423–431.  https://doi.org/10.1134/S1061933X10030178.CrossRefGoogle Scholar
  26. Ilayaraja, M., Krishnan, N. P., & Kannan, R. S. (2013). Adsorption of rhodamine-B and Congo red dye from aqueous solution using activated carbon: kinetics, isotherms, and thermodynamics. IOSR Journal Of Environmental Science, Toxicology And Food Technology, 5(5), 79–89.Google Scholar
  27. Indah, S., Helard, D., & Sasmita, A. (2016). Utilization of maize husk (Zea mays L.) as low-cost adsorbent in removal of iron from aqueous solution. Water Science and Technology, 73(12), 2929–2935.  https://doi.org/10.2166/wst.2016.154.CrossRefGoogle Scholar
  28. Kankılıc, G. B., Metin, A. Ü., & Tüzün, I. (2016). Phragmites australis: an alternative biosorbent for basic dye removal. Ecological Engineering, 86, 85–94.  https://doi.org/10.1016/j.ecoleng.2015.10.024.CrossRefGoogle Scholar
  29. Kesraoui, A., Mabrouk, A., & Seffen, M. (2017). Valuation of biomaterial: Phragmites australis in the retention of metal-complexed dyes. American Journal of Environmental Sciences, 13(3), 266–276.  https://doi.org/10.3844/ajessp.2017.266.276.CrossRefGoogle Scholar
  30. Kesraoui, A., Moussa, A., Ali, G. B., & Seffen, M. (2015). Biosorption of alpacide blue from aqueous solution by lignocellulosic biomass: Luffa cylindrica fibers. Environmental Science and Pollution Research, 23(16), 15832–15840.  https://doi.org/10.1007/s11356-015-5262-4.CrossRefGoogle Scholar
  31. Kesraoui, A., Selmi, T., Seffen, M., & Brouers, F. (2016). Influence of alternating current on the adsorption of indigo carmine. Environmental Science and Pollution Research, 24(11), 9940–9950.  https://doi.org/10.1007/s11356-016-7201-4.CrossRefGoogle Scholar
  32. Kristanti, R. A., & Hadibarata, T. (2016). Treatability of methylene blue solution by adsorption process using Neobalanocarpus hepmii and Capsicum annuum. Water, Air, & Soil Pollution, 227, 134.  https://doi.org/10.1007/s11270-016-2834-y.CrossRefGoogle Scholar
  33. Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1–39.Google Scholar
  34. Lakshmi, U. R., Srivastava, V. C., Mall, I. D., & Lataye, D. H. (2009). Rice husk ash as an effective adsorbent: evaluation of adsorptive characteristics for indigo carmine dye. Journal of Environmental Management, 90, 710–720.  https://doi.org/10.1016/j.jenvman.2008.01.002.CrossRefGoogle Scholar
  35. Langmuir, I. (1918). The constitution and fundamental properties of solids and liquids. Journal of American Chemical Society, 38, 2221–2295.CrossRefGoogle Scholar
  36. Manna, S., Roy, D., Saha, P., Gopakumar, D., & Thomas, S. (2017). Rapid methylene blue adsorption using modified lignocellulosic materials. Process Safety and Environmental Protection, 107, 346–356.  https://doi.org/10.1016/j.psep.2017.03.008.CrossRefGoogle Scholar
  37. Marrakchi, Z., Khiari, R., Oueslati, H., Mauret, E., & Mhenni, F. (2011). Pulping and papermaking properties of Tunisian alfa stems ( Stipa tenacissima )—effects of refining process. Industrial Crops and Products, 34, 1572–1582.  https://doi.org/10.1016/j.indcrop.2011.05.022.CrossRefGoogle Scholar
  38. Mendoza-Castillo, D. I., Villalobos-Ortega, N., Bonilla-Petriciolet, A., & Tapia-Picazo, J. C. (2015). Neural network modeling of heavy metal sorption on lignocellulosic biomasses: effect of metallic ion properties and sorbent characteristics. Industrial and Engineering Chemistry Research, 54(1), 443–453.  https://doi.org/10.1021/ie503619j.CrossRefGoogle Scholar
  39. Miraboutalebi, S. M., Nikouzad, S. K., Peydayesh, M., Allahgholi, N., Vafajoo, L., & McKay, G. (2017). Methylene blue adsorption via maize silk powder: kinetic, equilibrium, thermodynamic studies and residual error analysis. Process Safety and Environmental Protection, 106, 191–202.  https://doi.org/10.1016/j.psep.2017.01.010.CrossRefGoogle Scholar
  40. Miretzky, P., & Cirelli, A. F. (2010). Cr ( VI ) and Cr ( III ) removal from aqueous solution by raw and modified lignocellulosic materials: a review. Journal of Hazardous Materials, 180, 1–19.  https://doi.org/10.1016/j.jhazmat.2010.04.060.CrossRefGoogle Scholar
  41. Mitrogiannis, D., Markou, G., Çelekli, A., & Bozkurt, H. (2015). Biosorption of methylene blue onto Arthrospira platensis biomass: kinetic, equilibrium and thermodynamic studies. Journal of Environmental Chemical Engineering, 3, 670–680.  https://doi.org/10.1016/j.jece.2015.02.008.CrossRefGoogle Scholar
  42. Moyo, M., Chikazaza, L., Nyamunda, B. C., & Guyo, U. (2013). Adsorption batch studies on the removal of Pb (II) using maize tassel based activated carbon. Journal of Chemistry, 2013, 1–8.  https://doi.org/10.1155/2013/508934.CrossRefGoogle Scholar
  43. Nayak, A. K., & Pal, A. (2017). Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: process optimization and multi-variate modeling. Journal of Environmental Management, 200, 145–159.  https://doi.org/10.1016/j.jenvman.2017.05.045.CrossRefGoogle Scholar
  44. Panday, K. K., Prasad, G., & Singh, V. N. (1985). Copper (ii) removal from aqueous solutions by fly ash. Water Research, 19(7), 869–873.CrossRefGoogle Scholar
  45. Petrović, M., Šoštarić, T., Stojanović, M., Milojković, J., Mihajlović, M., Stanojević, M., & Stanković, S. (2015). Removal of Pb2+ ions by raw corn silk (Zea mays L.) as a novel biosorbent. Journal of the Taiwan Institute of Chemical Engineers, 0, 1–10.  https://doi.org/10.1016/j.jtice.2015.06.025.
  46. Ramzi, K., Nizar, M., Farouk, M., Naceur, B. M., & Evelyne, M. (2011). Sodium carboxylmethylate cellulose from date palm rachis as a sizing agent for cotton yarn. Fibers and Polymers, 12(5), 587–593.  https://doi.org/10.1007/s12221-011-0587-1.CrossRefGoogle Scholar
  47. Rehman, R., Javaria, Z., & Nisar, H. (2014). Adsorption studies of removal of indigo caramine dye from water by formaldehyde and urea treated cellulosic waste of citrus reticulata peels. Asian Journal Chemistry, 26(1), 43–47.Google Scholar
  48. Reza, R. A., & Ahmaruzzaman, M. (2015). Comparative study of waste derived adsorbents for sequestering methylene blue from aquatic environment. Journal of Environmental Chemical Engineering, 3, 395–404.  https://doi.org/10.1016/j.jece.2014.06.006.CrossRefGoogle Scholar
  49. Rodrigues, A. C. D., do Amaral Sobrinho, N. M. B., dos Santos, F. S., dos Santos, A. M., Pereira, A. C. C., & Lima, E. S. A. (2017). Biosorption of toxic metals by water lettuce (Pistia stratiotes) biomass. Water Air, and Soil Pollution, 228, 156.  https://doi.org/10.1007/s11270-017-3340-6.CrossRefGoogle Scholar
  50. Sakr, F., Sennaoui, A., Elouardi, M., Tamimi, M., & Assabbane, A. (2015). Étude de l ’ adsorption du Bleu de Méthylène sur un biomatériau à base de Cactus (adsorption study of Methylene Blue on biomaterial using cactus ). Journal of materials and Environmental Science, 6(2), 397–406.Google Scholar
  51. Salazar-Rabago, J. J., Leyva-Ramos, R., Rivera-Utrilla, J., Ocampo-Perez, R., & Cerino-Cordova, F. J. (2017). Biosorption mechanism of methylene blue from aqueous solution onto white pine (Pinus durangensis) sawdust: effect of operating conditions. Sustainable Environment Research, 27, 32–40.  https://doi.org/10.1016/j.serj.2016.11.009.CrossRefGoogle Scholar
  52. Santoni, I., Callone, E., Sandak, A., Sandak, J., & Dirè, S. (2015). Solid state NMR and IR characterization of wood polymer structure in relation to tree provenance. Carbohydrate Polymers, 117, 710–721.  https://doi.org/10.1016/j.carbpol.2014.10.057.CrossRefGoogle Scholar
  53. Temkin, M. (1941). Adsorption equilibrium and kinetics of process on non-homogeneous surfaces and in the interaction between adsorbed molecules. Journal of Physical Chemical, 15, 296–233.Google Scholar
  54. Tichaona, N., & Olindah, H. (2013). Equilibrium isotherm analysis of the biosorption of Zn2+ ions by acid treated Zea mays leaf powder. International Journal of Advances in Engineering & Technology, 6(1), 128–139.Google Scholar
  55. Tran, H. N., You, S. J., & Chao, H. P. (2017). Insight into adsorption mechanism of cationic dye onto agricultural wastes. Journal of Chemical Engineering communications, 204(9), 1020–1036.  https://doi.org/10.1007/s11814-017-0056-7.CrossRefGoogle Scholar
  56. Vafakhah, S., Bahrololoom, M. E., & Saeedikhani, M. (2016). Adsorption kinetics of cupric ions on mixture of modified corn stalk and modified tomato waste. Journal of Water Resource and Protection, 8, 1238–1250.  https://doi.org/10.4236/jwarp.2016.813095.CrossRefGoogle Scholar
  57. Zhang, S., Wang, Z., Zhang, Y., Pan, H., & Tao, L. (2016). Adsorption of methylene blue on organosolv lignin from rice straw. Procedia Environmental Sciences, 31, 3–11.  https://doi.org/10.1016/j.proenv.2016.02.001.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.High School of Sciences and Technology of Hamam Sousse - Laboratory of Energy and Materials (LaBEM)Sousse UniversityHammam SousseTunisia
  2. 2.Faculty of Science of MonastirMonastir UniversityMonastirTunisia
  3. 3.IC2MP – UMR7285Université de PoitiersPoitiersFrance

Personalised recommendations