Skip to main content
Log in

Kinetic, Thermodynamic, and Adsorption Behavior of Cationic and Anionic Dyes onto Corn Stigmata: Nonlinear and Stochastic Analyses

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The potential to remove methylene blue (MB) basic dye and indigo carmine (IC) acidic dye, from wastewater treatment systems using corn stigmata through biosorption was investigated in batch experiments. The effects of contact time, solution pH, biosorbent dosage, initial dye concentration, salts, and temperature were sought. Results showed that the maximal uptakes of MB were 106.3 mg g−1 at pH = 7 and 63.7 mg g−1 for IC at pH = 2. In order to determine the properties and surface structure of the biomass physicochemical properties (pHpzc, elemental analysis, Boehm’s titration, and chemical composition), spectral (FTIR analysis) and morphological characteristics (SEM) were investigated. Random distribution of the active sites was described by the new biosorption fractal model of Brouers–Sotolongo. The thermodynamic study demonstrated the favorable character of the biosorption of MB and of IC, which was inhibited by the presence of salts. The elucidation of the biosorption mechanism showed that the biosorption of MB onto corn stigmata was mainly controlled by chemisorption and the biosorption of IC was described by physisorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdallah, R., & Taha, S. (2012). Biosorption of methylene blue from aqueous solution by nonviable Aspergillus fumigatus. Chemical Engineering Journal, 195–196, 69–76. https://doi.org/10.1016/j.cej.2012.04.066.

    Article  Google Scholar 

  • Agarwal, S., Tyagi, I., Gupta, V. K., Ghasemi, N., Shahivand, M., & Ghasemi, M. (2016). Kinetics, equilibrium studies and thermodynamics of methylene blue adsorption on Ephedra strobilacea saw dust and modified using phosphoric acid and zinc chloride. Journal of Molecular Liquids, 218, 208–218. https://doi.org/10.1016/j.molliq.2016.02.073.

    Article  CAS  Google Scholar 

  • Anastopoulos, I., & Kyzas, G. Z. (2015). Composts as biosorbents for decontamination of various pollutants: a review. Water, Air, and Soil Pollution, 226, 61. https://doi.org/10.1007/s11270-015-2345-2.

    Article  Google Scholar 

  • Àngels Olivella, M., Fiol, N., de la Torre, F., Poch, J., & Villaescusa, I. (2012). A mechanistic approach to methylene blue sorption on two vegetable wastes: cork bark and grape stalks. BioResources, 7(3), 3340–3354.

    Google Scholar 

  • Balarak, D., Jaafari, J., Hassani, G., Mahdavi, Y., Tyagi, I., Agarwal, S., & Gupta, V. K. (2015). The use of low-cost adsorbent (Canola residues) for the adsorption of methylene blue from aqueous solution: isotherm, kinetic and thermodynamic studies. Colloids and Interface Science Communications, 7, 16–19. https://doi.org/10.1016/j.colcom.2015.11.004.

    Article  CAS  Google Scholar 

  • Balistrieri, L. S., & Murray, J. w. (1981). The surface chemistry of goethite (alpha FeOOH) in major ion seawater. American Journal of Sciences, 281, 788–806.

    CAS  Google Scholar 

  • Hamissa, A. M. B., Brouers, F., Ncibi, M. C., & Seffen, M. (2013). Kinetic modeling study on methylene blue sorption onto Agave americana fibers: fractal kinetics and regeneration studies. Separation Science and Technology, 48, 2834–2842. https://doi.org/10.1080/01496395.2013.809104.

    Article  CAS  Google Scholar 

  • Boehm, H. P. (1994). Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 32(5), 759–769. https://doi.org/10.1016/0008-6223(94)90031-0.

    Article  CAS  Google Scholar 

  • Boudechiche, N., Mokaddem, H., Sadaoui, Z., & Trari, M. (2016). Biosorption of cationic dye from aqueous solutions onto lignocellulosic biomass (Luffa cylindrica): characterization, equilibrium, kinetic and thermodynamic studies. International Journal of Industrial Chemistry, 7, 167–180. https://doi.org/10.1007/s40090-015-0066-4.

    Article  CAS  Google Scholar 

  • Brouers, F., & Al-Musawi, T. J. (2015). On the optimal use of isotherm models for the characterization of biosorption of lead onto algae. Journal of Molecular Liquids, 212, 46–51. https://doi.org/10.1016/j.molliq.2015.08.054.

    Article  CAS  Google Scholar 

  • Brouers, F., & Sotolongo-costa, O. (2006). Generalized fractal kinetics in complex systems (application to biophysics and biotechnology). Physica A, 368, 165–175. https://doi.org/10.1016/j.physa.2005.12.062.

    Article  Google Scholar 

  • Brouers, F., Sotolongo, O., Marquez, F., & Pirard, J. P. (2005). Microporous and heterogeneous surface adsorption isotherms arising from levy distributions. Physica A, 349, 271–282. https://doi.org/10.1016/j.physa.2004.10.032.

  • Chao, H.-P., & You, S.-J. (2017). Activated carbons from golden shower upon different chemical activation methods: synthesis and characterizations. Adsorption Science & Technology, 0(0),1–19. https://doi.org/10.1177/0263617416684837.

  • Daneshvar, E., Vazirzadeh, A., Niazi, A., Sillanpä ä, M., & Bhatnagar, A. (2017). A comparative study of methylene blue biosorption using different modified brown, red and green macroalgae—effect of pretreatment. Chemical Engineering Journal, 307, 435–446. https://doi.org/10.1016/j.cej.2016.08.093.

    Article  CAS  Google Scholar 

  • de Almeida, E. J. R., & Corso, C. R. (2016). Acid blue 161: decolorization and toxicity analysis after microbiological treatment. Water, Air, and Soil Pollution, 227, 468. https://doi.org/10.1007/s11270-016-3042-5.

    Article  Google Scholar 

  • de Oliveira Brito, S. M., Andrade, H. M. C., Soares, L. F., & de Azevedo, R. P. (2010). Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions. Journal of Hazardous Materials, 174, 84–92. https://doi.org/10.1016/j.jhazmat.2009.09.020.

    Article  Google Scholar 

  • Foo, K. Y. (2016). Value-added utilization of maize cobs waste as an environmental friendly solution for the innovative treatment of carbofuran. Process Safety and Environmental Protection, 100, 295–304. https://doi.org/10.1016/j.psep.2016.01.020.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. (1906). Über die adsorption in losungen. Zeitschrift für Physikalische Chemie, 57, 385–471.

    CAS  Google Scholar 

  • Fu, J., Chen, Z., Wang, M., Liu, S., Zhang, J., Zhang, J., et al. (2015). Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): kinetics, isotherm, thermodynamics and mechanism analysis. Chemical Engineering Journal, 259, 53–61. https://doi.org/10.1016/j.cej.2014.07.101.

    Article  CAS  Google Scholar 

  • Garcia-Jaldon, C. (1992). Caractérisation morphologique et chimique du chanvre (Cannabis sativa)/Prétraitement à la vapeur et valorization, Thesis,(Grenoble I University).

  • Ghaedi, M., Nasab, A. G., Khodadoust, S., Rajabi, M., & Azizian, S. (2014). Application of activated carbon as adsorbents for efficient removal of methylene blue: kinetics and equilibrium study. Journal of Industrial and Engineering Chemistry, 20, 2317–2324. https://doi.org/10.1016/j.jiec.2013.10.007.

    Article  CAS  Google Scholar 

  • Gupta, T. B., & Lataye, D. H. (2017). Adsorption of indigo carmine dye onto Acacia nilotica ( Babool ) sawdust activated carbon. Journal of Hazardous,Toxic ,and Radioactive Waste, 21(4), 1–1. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000365.

    Article  Google Scholar 

  • Gupta, V. K., Pathania, D., Sharma, S., Agarwal, S., & Singh, P. (2013). Remediation of noxious chromium (VI) utilizing acrylic acid grafted lignocellulosic adsorbent. Journal of Molecular Liquids, 177, 343–352. https://doi.org/10.1016/j.molliq.2012.10.017.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & Mckay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering, 70, 115–124.

    Article  CAS  Google Scholar 

  • Hosni, K., & Srasra, E. (2010). Evaluation of phosphate removal from water by calcined-LDH synthesized from the dolomite. Colloid Journal, 72(3), 423–431. https://doi.org/10.1134/S1061933X10030178.

    Article  CAS  Google Scholar 

  • Ilayaraja, M., Krishnan, N. P., & Kannan, R. S. (2013). Adsorption of rhodamine-B and Congo red dye from aqueous solution using activated carbon: kinetics, isotherms, and thermodynamics. IOSR Journal Of Environmental Science, Toxicology And Food Technology, 5(5), 79–89.

  • Indah, S., Helard, D., & Sasmita, A. (2016). Utilization of maize husk (Zea mays L.) as low-cost adsorbent in removal of iron from aqueous solution. Water Science and Technology, 73(12), 2929–2935. https://doi.org/10.2166/wst.2016.154.

    Article  CAS  Google Scholar 

  • Kankılıc, G. B., Metin, A. Ü., & Tüzün, I. (2016). Phragmites australis: an alternative biosorbent for basic dye removal. Ecological Engineering, 86, 85–94. https://doi.org/10.1016/j.ecoleng.2015.10.024.

    Article  Google Scholar 

  • Kesraoui, A., Mabrouk, A., & Seffen, M. (2017). Valuation of biomaterial: Phragmites australis in the retention of metal-complexed dyes. American Journal of Environmental Sciences, 13(3), 266–276. https://doi.org/10.3844/ajessp.2017.266.276.

    Article  CAS  Google Scholar 

  • Kesraoui, A., Moussa, A., Ali, G. B., & Seffen, M. (2015). Biosorption of alpacide blue from aqueous solution by lignocellulosic biomass: Luffa cylindrica fibers. Environmental Science and Pollution Research, 23(16), 15832–15840. https://doi.org/10.1007/s11356-015-5262-4.

    Article  Google Scholar 

  • Kesraoui, A., Selmi, T., Seffen, M., & Brouers, F. (2016). Influence of alternating current on the adsorption of indigo carmine. Environmental Science and Pollution Research, 24(11), 9940–9950. https://doi.org/10.1007/s11356-016-7201-4.

    Article  Google Scholar 

  • Kristanti, R. A., & Hadibarata, T. (2016). Treatability of methylene blue solution by adsorption process using Neobalanocarpus hepmii and Capsicum annuum. Water, Air, & Soil Pollution, 227, 134. https://doi.org/10.1007/s11270-016-2834-y.

    Article  Google Scholar 

  • Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1–39.

    Google Scholar 

  • Lakshmi, U. R., Srivastava, V. C., Mall, I. D., & Lataye, D. H. (2009). Rice husk ash as an effective adsorbent: evaluation of adsorptive characteristics for indigo carmine dye. Journal of Environmental Management, 90, 710–720. https://doi.org/10.1016/j.jenvman.2008.01.002.

    Article  CAS  Google Scholar 

  • Langmuir, I. (1918). The constitution and fundamental properties of solids and liquids. Journal of American Chemical Society, 38, 2221–2295.

    Article  Google Scholar 

  • Manna, S., Roy, D., Saha, P., Gopakumar, D., & Thomas, S. (2017). Rapid methylene blue adsorption using modified lignocellulosic materials. Process Safety and Environmental Protection, 107, 346–356. https://doi.org/10.1016/j.psep.2017.03.008.

    Article  CAS  Google Scholar 

  • Marrakchi, Z., Khiari, R., Oueslati, H., Mauret, E., & Mhenni, F. (2011). Pulping and papermaking properties of Tunisian alfa stems ( Stipa tenacissima )—effects of refining process. Industrial Crops and Products, 34, 1572–1582. https://doi.org/10.1016/j.indcrop.2011.05.022.

    Article  CAS  Google Scholar 

  • Mendoza-Castillo, D. I., Villalobos-Ortega, N., Bonilla-Petriciolet, A., & Tapia-Picazo, J. C. (2015). Neural network modeling of heavy metal sorption on lignocellulosic biomasses: effect of metallic ion properties and sorbent characteristics. Industrial and Engineering Chemistry Research, 54(1), 443–453. https://doi.org/10.1021/ie503619j.

    Article  CAS  Google Scholar 

  • Miraboutalebi, S. M., Nikouzad, S. K., Peydayesh, M., Allahgholi, N., Vafajoo, L., & McKay, G. (2017). Methylene blue adsorption via maize silk powder: kinetic, equilibrium, thermodynamic studies and residual error analysis. Process Safety and Environmental Protection, 106, 191–202. https://doi.org/10.1016/j.psep.2017.01.010.

    Article  CAS  Google Scholar 

  • Miretzky, P., & Cirelli, A. F. (2010). Cr ( VI ) and Cr ( III ) removal from aqueous solution by raw and modified lignocellulosic materials: a review. Journal of Hazardous Materials, 180, 1–19. https://doi.org/10.1016/j.jhazmat.2010.04.060.

    Article  CAS  Google Scholar 

  • Mitrogiannis, D., Markou, G., Çelekli, A., & Bozkurt, H. (2015). Biosorption of methylene blue onto Arthrospira platensis biomass: kinetic, equilibrium and thermodynamic studies. Journal of Environmental Chemical Engineering, 3, 670–680. https://doi.org/10.1016/j.jece.2015.02.008.

    Article  CAS  Google Scholar 

  • Moyo, M., Chikazaza, L., Nyamunda, B. C., & Guyo, U. (2013). Adsorption batch studies on the removal of Pb (II) using maize tassel based activated carbon. Journal of Chemistry, 2013, 1–8. https://doi.org/10.1155/2013/508934.

    Article  Google Scholar 

  • Nayak, A. K., & Pal, A. (2017). Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: process optimization and multi-variate modeling. Journal of Environmental Management, 200, 145–159. https://doi.org/10.1016/j.jenvman.2017.05.045.

    Article  CAS  Google Scholar 

  • Panday, K. K., Prasad, G., & Singh, V. N. (1985). Copper (ii) removal from aqueous solutions by fly ash. Water Research, 19(7), 869–873.

    Article  CAS  Google Scholar 

  • Petrović, M., Šoštarić, T., Stojanović, M., Milojković, J., Mihajlović, M., Stanojević, M., & Stanković, S. (2015). Removal of Pb2+ ions by raw corn silk (Zea mays L.) as a novel biosorbent. Journal of the Taiwan Institute of Chemical Engineers, 0, 1–10. https://doi.org/10.1016/j.jtice.2015.06.025.

  • Ramzi, K., Nizar, M., Farouk, M., Naceur, B. M., & Evelyne, M. (2011). Sodium carboxylmethylate cellulose from date palm rachis as a sizing agent for cotton yarn. Fibers and Polymers, 12(5), 587–593. https://doi.org/10.1007/s12221-011-0587-1.

    Article  CAS  Google Scholar 

  • Rehman, R., Javaria, Z., & Nisar, H. (2014). Adsorption studies of removal of indigo caramine dye from water by formaldehyde and urea treated cellulosic waste of citrus reticulata peels. Asian Journal Chemistry, 26(1), 43–47.

    CAS  Google Scholar 

  • Reza, R. A., & Ahmaruzzaman, M. (2015). Comparative study of waste derived adsorbents for sequestering methylene blue from aquatic environment. Journal of Environmental Chemical Engineering, 3, 395–404. https://doi.org/10.1016/j.jece.2014.06.006.

    Article  CAS  Google Scholar 

  • Rodrigues, A. C. D., do Amaral Sobrinho, N. M. B., dos Santos, F. S., dos Santos, A. M., Pereira, A. C. C., & Lima, E. S. A. (2017). Biosorption of toxic metals by water lettuce (Pistia stratiotes) biomass. Water Air, and Soil Pollution, 228, 156. https://doi.org/10.1007/s11270-017-3340-6.

    Article  Google Scholar 

  • Sakr, F., Sennaoui, A., Elouardi, M., Tamimi, M., & Assabbane, A. (2015). Étude de l ’ adsorption du Bleu de Méthylène sur un biomatériau à base de Cactus (adsorption study of Methylene Blue on biomaterial using cactus ). Journal of materials and Environmental Science, 6(2), 397–406.

    Google Scholar 

  • Salazar-Rabago, J. J., Leyva-Ramos, R., Rivera-Utrilla, J., Ocampo-Perez, R., & Cerino-Cordova, F. J. (2017). Biosorption mechanism of methylene blue from aqueous solution onto white pine (Pinus durangensis) sawdust: effect of operating conditions. Sustainable Environment Research, 27, 32–40. https://doi.org/10.1016/j.serj.2016.11.009.

    Article  CAS  Google Scholar 

  • Santoni, I., Callone, E., Sandak, A., Sandak, J., & Dirè, S. (2015). Solid state NMR and IR characterization of wood polymer structure in relation to tree provenance. Carbohydrate Polymers, 117, 710–721. https://doi.org/10.1016/j.carbpol.2014.10.057.

    Article  CAS  Google Scholar 

  • Temkin, M. (1941). Adsorption equilibrium and kinetics of process on non-homogeneous surfaces and in the interaction between adsorbed molecules. Journal of Physical Chemical, 15, 296–233.

    CAS  Google Scholar 

  • Tichaona, N., & Olindah, H. (2013). Equilibrium isotherm analysis of the biosorption of Zn2+ ions by acid treated Zea mays leaf powder. International Journal of Advances in Engineering & Technology, 6(1), 128–139.

    Google Scholar 

  • Tran, H. N., You, S. J., & Chao, H. P. (2017). Insight into adsorption mechanism of cationic dye onto agricultural wastes. Journal of Chemical Engineering communications, 204(9), 1020–1036. https://doi.org/10.1007/s11814-017-0056-7.

    Article  CAS  Google Scholar 

  • Vafakhah, S., Bahrololoom, M. E., & Saeedikhani, M. (2016). Adsorption kinetics of cupric ions on mixture of modified corn stalk and modified tomato waste. Journal of Water Resource and Protection, 8, 1238–1250. https://doi.org/10.4236/jwarp.2016.813095.

    Article  CAS  Google Scholar 

  • Zhang, S., Wang, Z., Zhang, Y., Pan, H., & Tao, L. (2016). Adsorption of methylene blue on organosolv lignin from rice straw. Procedia Environmental Sciences, 31, 3–11. https://doi.org/10.1016/j.proenv.2016.02.001.

    Article  Google Scholar 

Download references

Funding

The authors express their sincere gratitude to the Laboratory of Energy and Materials (High School of Sciences and Technology of Hammam Sousse) for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aida Kesraoui.

Electronic supplementary material

Fig. SI

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbarki, F., Kesraoui, A., Seffen, M. et al. Kinetic, Thermodynamic, and Adsorption Behavior of Cationic and Anionic Dyes onto Corn Stigmata: Nonlinear and Stochastic Analyses. Water Air Soil Pollut 229, 95 (2018). https://doi.org/10.1007/s11270-018-3749-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3749-6

Keywords

Navigation