Skip to main content

Advertisement

Log in

Equilibrium, kinetic, and thermodynamic studies of the adsorption of anionic and cationic dyes from aqueous solution using agricultural waste biochar

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The potential of an agricultural waste (Calophyllum inophyllum seed husk) as a low-cost adsorbent for the removal of dyes from an aqueous solution was studied. Biosorption of Alizarin Yellow (AY), an anionic dye, and Malachite Green (MG), a cationic dye, onto modified C. inophyllum seed husk showed that certain modifications improved the adsorption property of this adsorbent. Modification of the seed husk with a combination of carbonization and microwave irradiation (HCM) worked best for the removal of AY, while a base-treated carbonized form (HCB) of the husk produced the best result for the removal of MG. Batch adsorption studies were conducted, and various parameters such as pH, initial concentration of the adsorbates, adsorbent dose, time, and temperature were optimized to evaluate the adsorption behavior of the biomass. Optimum dye removal was obtained at pH 3 for AY and pH 5 for MG after 100 min of the adsorbent and adsorbate interaction. Kinetic data obtained fitted better into the pseudo-second-order model, thus suggesting a chemisorption mechanism. Equilibrium studies showed that the removal of the dyes is best represented with the Freundlich isotherm model, suggesting a heterogeneous surface of the modified C. inophyllum seed husk and also indicating that surface adsorption is not the rate-determining step. Adsorption capacities of 27.90 mg/g and 31.25 mg/g were obtained for AY and MG, respectively. Thermodynamic parameters with ∆Ho values of 4139.29 J/mol for AY and 10,089.04 J/mol for MG and ∆So values of 3.61 and 28.38 J/mol/K for AY and MG, respectively, show that the adsorption processes are endothermic in nature, entropy-driven, and nonspontaneous. The results showed that the low-cost biomass possesses the potential for the effective removal of both cationic and anionic dyes from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [A. A.], upon reasonable request.

References

  1. H.N. Bhatti, A. Jabeen, M. Iqbal, S. Noreen, Z. Naseem, Adsorptive behavior of rice bran-based composites for malachite green dye: isotherm, kinetic and thermodynamic studies. J. Mol. Liq. 237, 322 (2017)

    Article  CAS  Google Scholar 

  2. M.B. Gholivand, Y. Yamini, M. Dayeni, S. Seidi, E. Tahmasebi, Adsorptive behavior of rice bran-based composites for malachite green dye: isotherm, kinetic and thermodynamic studies. J. Environ. Chem. Eng. 3, 529 (2015)

    Article  CAS  Google Scholar 

  3. B.H. Hameed, Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent. J. Hazard. Mater. 162, 344 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. C.J. Ogugbue, T. Sawidis, Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluent. Biotechnol. Res. Int. 97, 1329 (2011)

    Google Scholar 

  5. F.S. Abbas, Dyes removal from wastewater using agricultural waste. Adv. Environ. Biol. 7, 1019 (2013)

    Google Scholar 

  6. N. Mathur, P. Bhatnagar, P. Bakre, Assessing mutagenicity of textile dyes from Pali(Rajasthan) using Ames bioassay. Appl. Ecol. Environ. Res. 4(1), 111 (2006)

    Article  Google Scholar 

  7. D. Suteu, D. Bilba, F. Dan, Synthesis and characterization of polyamide powders for sorption of reactive dyes from aqueous solutions. J. Appl. Polym. Sci. 105(4), 1833 (2007)

    Article  CAS  Google Scholar 

  8. R. Jayalakshmi, J. Jeyanthi, Simultaneous removal of binary dye from textile effluent using cobalt ferrite-alginate nanocomposite: performance and mechanism. Microchem. J. 145, 791 (2019)

    Article  Google Scholar 

  9. H. Li, S. Liu, J. Zhao, N. Feng, Removal of reactive dyes from wastewater assisted with kaolin clay by magnesium hydroxide coagulation process. Colloids Surf. A Physicochem. Eng. Asp. 494, 222 (2016)

    Article  CAS  Google Scholar 

  10. S. Marimuthu, A.J. Antonisamy, S. Malayandi, K. Rajendran, P.C. Tsai, A. Pugazhendhi, V.K. Ponnusamy, Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. J. Photochem. Photobiol. B: Biol. 205, 111823 (2020)

    Article  CAS  Google Scholar 

  11. S. Mohammadghasemi-Samani, M. Taghdiri, Facile synthesis of hexamine–silicotungstic acid hybrid and its photocatalytic activity toward degradation of dyes. Int. J. Environ. Sci. Technol. 14, 2093 (2017)

    Article  CAS  Google Scholar 

  12. D. Sun, X. Zhang, Y. Wu, T. Liu, Kinetic mechanism of competitive adsorption of disperse dye and anionic dye on fly ash. Int. J. Environ. Sci. Technol. 10, 799 (2013)

    Article  CAS  Google Scholar 

  13. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Kinetic mechanism of competitive adsorption of disperse dye and anionic dye on fly ash. Adv. Coll. Int. Sci. 209, 172 (2013)

    Article  Google Scholar 

  14. M. Hadadian, E.K. Goharshadi, M.M. Fard, H. Ahmadzadeh, Synergistic effect of graphene nanosheets and zinc oxide nanoparticles for effective adsorption of Ni (II) ions from aqueous solutions. Appl. Phys. A 124(3), 1–10 (2018)

    Article  CAS  Google Scholar 

  15. R. Mehrkhah, E.K. Goharshadi, M.M. Ghafurian, M. Mohammadi, O. Mahian, Clean water production by non-noble metal/reduced graphene oxide nanocomposite coated on wood: scalable interfacial solar steam generation and heavy metal sorption. Sol. Energy 224, 440–454 (2021)

    Article  CAS  Google Scholar 

  16. R. Mehrkhah, E.K. Goharshadi, M. Mohammadi, Highly efficient solar desalination and wastewater treatment by economical wood-based double-layer photoabsorbers. J. Ind. Eng. Chem. 101, 334–347 (2021)

    Article  CAS  Google Scholar 

  17. Y. Altunkaynak, M. Canpolat, Ö. Yavuz, Adsorption of cobalt (II) ions from aqueous solution using orange peel waste: equilibrium, kinetic and thermodynamic studies. J. Iran. Chem. Soc. 19(6), 2437–2448 (2022)

    Article  CAS  Google Scholar 

  18. S.A. Patil, P.D. Kumbhar, B.S. Satvekar, N.S. Harale, S.C. Bhise, S.K. Patil, ..., M.A. Anuse, Adsorption of toxic crystal violet dye from aqueous solution by using waste sugarcane leaf-based activated carbon: isotherm, kinetic and thermodynamic study. J. Iran. Chem. Soc., 1–16 (2022)

  19. Y. Achour, A. El Kassimi, M. Khouili, A. Hafid, M.R. Laamari, M. El Haddad, S. Melliani, Competitive removal of ternary dyes mixture from aqueous media: equilibrium, kinetic, isotherm, thermodynamic and DFT studies. J. Iran. Chem. Soc., 1–15 (2022)

  20. H.M. Mashhoor, M. Eftekhari, N. Rezazadeh, M.K. Nazarabad, Graphene oxide–tungsten oxide (GO–WO3) adsorbent for the removal of copper ion. Nanotechnol. Environ. Eng. (2022). https://doi.org/10.1007/s41204-022-00269-7

    Article  Google Scholar 

  21. G. Kwon, A. Bhatnagar, H. Wang, E.E. Kwon, H. Song, A review of recent advancements in the utilization of biomass and industrial wastes into engineered biochar. J. Hazar. Mater. 400, 123242 (2020)

    Article  CAS  Google Scholar 

  22. X. Wang, Z. Guo, Z. Hu, J. Zhang, Recent advances in biochar application for water and wastewater treatment: a review. PeerJ. 8, e9164 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  23. A.A. Abia, E.D. Asuquo, Sorption of Pb (II) and Cd (II) ions onto chemically unmodified and modified oil palm fruit fibre adsorbent: analysis of pseudo second order kinetic models. Indian J. Chem. Tech. 15, 341 (2008)

    CAS  Google Scholar 

  24. A.A. Adenuga, J.A.O. Oyekunle, O.D. Amos, Application of Calophyllum Inophyllum seed husk as a low-cost biosorbent for efficient removal of heavy metals from wastewater for a safer environment. Curr. Environ. Eng. 6, 159 (2019)

    Article  CAS  Google Scholar 

  25. L. Adlnasab, M. Ezoddin, M.A. Karimi, N. Hatamikia, MCM-41@ Cu–Fe–LDH magnetic nanoparticles modified with cationic surfactant for removal of alizarin yellow from water samples and its determination with HPLC. Res. Chem. Intermed. 44, 3249 (2018)

    Article  CAS  Google Scholar 

  26. M. Salman, M. Athar, U. Shafique, M.I. Din, R. Rehman, A. Akram, S.Z. Li, Adsorption modeling of alizarin yellow on untreated and treated charcoal. Turk. J. Eng. Environ. Sci. 35, 389 (2011)

    Google Scholar 

  27. A.S. Sartape, A.M. Mandhare, V.V. Jadhav, P.D. Raut, M.A. Anuse, S.S. Kolekar, Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab. J. Chem. 10, S3229 (2017)

    Article  CAS  Google Scholar 

  28. O.S. Lawal, A.R. Sanni, I.A. Ajayi, O.O. Rabiu, Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead (II) ions onto the seed husk of Calophyllum inophyllum. J. Hazard. Mater. 177, 829 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. S. Suresh, Removal of Basic Violet 14 from aqueous solution using sulphuric acid activated materials. Springerplus 5, 1 (2016)

    Article  CAS  Google Scholar 

  30. P. Chakravarty, N.S. Sarma, H.P. Sarma, Removal of lead (II) from aqueous solution using heartwood of Areca catechu powder. Desalination 256, 16 (2010)

    Article  CAS  Google Scholar 

  31. K. Ameta, P. Tak, D. Soni, D. Suresh, Photocatalytic decomposition of malachite green over lead chromate powder. Sci. Rev. Chem. Commun. 4, 38 (2014)

    Google Scholar 

  32. O. Hamdaoui, Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. J. Hazard. Mater. 135, 264 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. A.L. Cazetta, A.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, V.C. Martins Almeida, NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption. Chem. Eng. J. 174, 117 (2011)

    Article  CAS  Google Scholar 

  34. N. Barka, S. Qouzal, A. Assabbane, Y.A. Ichou, Removal of reactive yellow 84 from aqueous solutions by adsorption onto hydroxyapaite. J. Saudi Chem. Soc. 15, 263 (2011)

    Article  CAS  Google Scholar 

  35. T. Chen, Z. Zhou, R. Han, R. Meng, H. Wang, W. Lu, Adsorption of cadmium by biochar derived from municipal sewage sludge: impact factors and adsorption mechanism. Chemosphere 134, 286 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. R. Rehman, T. Mahmud, A. Arshad, Removal of alizarin yellow and murexide dyes from water using formalin treated Pisum sativum peels. Asian J. Chem. 27, 1593 (2015)

    Article  CAS  Google Scholar 

  37. J. Febrianto, A.N. Kosasih, J. Sunarso, Y.H. Ju, N. Indraswati, S. Ismadji, Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J. Hazard. Mater. 162, 616 (2009)

    Article  CAS  PubMed  Google Scholar 

  38. U. Gecgel, O. Uner, G.B. Gokara, Adsorption of cationic dyes on activated carbon obtained from waste Elaeagnus stone. Adsorpt. Sci. Technol. 34, 512 (2016)

    Article  CAS  Google Scholar 

  39. W.T. Al-Rubayee, O.F. Abdul-Rasheed, N.M. Ali, Preparation of a modified nanoalumina sorbent for the removal of alizarin yellow and methylene blue dyes from aqueous solutions. J. Chem. (2016). https://doi.org/10.1155/2016/4683859

    Article  Google Scholar 

  40. O. Hamdaoui, M. Chiha, E. Naffrechoux, Ultrasound-assisted removal of malachite green from aqueous solution by dead pine needles. Ultrason. Sonochem. 15, 799 (2008)

    Article  CAS  PubMed  Google Scholar 

  41. K.V. Kumar, A. Kumaran, Removal of Methylene blue by mango seed kernel powder. Biochem. Eng. J. 27(1), 83 (2008)

    Article  Google Scholar 

  42. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part. I: solids. J. Am. Chem. Soc. 38, 2221 (1916)

    Article  CAS  Google Scholar 

  43. P.S. Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, S. Sivanesan, Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination 261, 52 (2010)

    Article  Google Scholar 

  44. H.M. Freundlich, Over the adsorption in solution. J. Phys. Chem. 57, 1100 (1906)

    Google Scholar 

  45. M. Özacar, İA. Şengil, Adsorption of metal complex dyes from aqueous solutions by pine sawdust. Bioresour. Technol. 96(7), 791 (2005)

    Article  PubMed  Google Scholar 

  46. G. Neha, A.K. Kushwaha, M.C. Chattopadhyaya, Kinetics and thermodynamics of malachite green adsorption on banana pseudo-stem fibers. J. Chem. Pharm. Res. 3(1), 284–296 (2011)

    Google Scholar 

  47. O. Hamdaoui, F. Saoudi, M. Chiha, E. Naffrechoux, Sorption of malachite green by a novel sorbent, dead leaves of plane tree: equilibrium and kinetic modeling. Chem. Eng. J. 143(1–3), 73–84 (2008)

    Article  CAS  Google Scholar 

  48. S.D. Khattri, M.K. Singh, Removal of malachite green from dye wastewater using neem sawdust by adsorption. J. Hazard. Mater. 167(1–3), 1089–1094 (2009)

    Article  CAS  PubMed  Google Scholar 

  49. J. Zhang, Y. Li, C. Zhang, Y. Jing, Adsorption of malachite green from aqueous solution onto carbon prepared from Arundo donax root. J. Hazard. Mater. 150(3), 774–782 (2008)

    Article  CAS  PubMed  Google Scholar 

  50. N. Gupta, A.K. Kushwaha, M.C. Chattopadhyaya, Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arab. J. Chem. 9, S707–S716 (2016)

    Article  CAS  Google Scholar 

  51. S. Banerjee, Y.C. Sharma, Equilibrium and kinetic studies for removal of malachite green from aqueous solution by a low cost activated carbon. J. Ind. Eng. Chem. 19(4), 1099–1105 (2013)

    Article  Google Scholar 

  52. M. Rajabi, B. Mirza, K. Mahanpoor, M. Mirjalili, F. Najafi, O. Moradi, H. Sadegh, R. Shahryari-ghoshekandi, M. Asif, I. Tyagi, S. Agarwal, V.K. Gupta, Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: determination of equilibrium and kinetics parameters. J. Ind. Eng. Chem. 34, 130–138 (2016)

    Article  CAS  Google Scholar 

  53. J.Y. Yang, X.Y. Jiang, F.P. Jiao, J.G. Yu, The oxygen-rich pentaerythritol modified multi-walled carbon nanotube as an efficient adsorbent for aqueous removal of alizarin yellow R and alizarin red S. Appl. Surf. Sci. 436, 198–206 (2018)

    Article  CAS  Google Scholar 

  54. M. Salman, M. Athar, U. Shafique, M.I. Din, Adsorption modeling of alizarin yellow on untreated and treated charcoal. Turk. J. Eng. Environ. Sci. 35(3), 389–396 (2011)

    Google Scholar 

  55. N. Kaya, Z. Yildiz Uzun, Investigation of effectiveness of pyrolysis products on removal of alizarin yellow GG from aqueous solution: a comparative study with commercial activated carbon. Water Sci. Technol. 81(6), 1191–1208 (2020)

    Article  CAS  PubMed  Google Scholar 

  56. M.I. Ismail, M.S.M. Fadzil, N.N.F. Rosmadi, N.R.A.M. Razali, A.M. Daud, Acid treated corn stalk adsorbent for removal of alizarin yellow dye in wastewater. in Journal of Physics: Conference Series, vol. 1349, no. 1 (IOP Publishing, 2019), p. 012105

Download references

Acknowledgements

The authors acknowledge the Chemistry Department of Obafemi Awolowo University (OAU) Ile-Ife, Nigeria, for providing the research platform for this study.

Funding

The authors did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeniyi Abiodun Adenuga.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogunlusi, G.O., Amos, O.D., Olatunji, O.F. et al. Equilibrium, kinetic, and thermodynamic studies of the adsorption of anionic and cationic dyes from aqueous solution using agricultural waste biochar. J IRAN CHEM SOC 20, 817–830 (2023). https://doi.org/10.1007/s13738-022-02721-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02721-6

Keywords

Navigation