Skip to main content
Log in

Decolorization of triarylmethane dyes, malachite green, and crystal violet, by sewage sludge biochar: Isotherm, kinetics, and adsorption mechanism comparison

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Sewage sludge biochar (SBC) was used as adsorbent to study the adsorption behavior of triarylmethane dyes, malachite green (MG; diaminotriphenylmethane), and crystal violet (CV; triaminotriphenylmethane). SBC exhibited high content (g/kg) of Al (65.8), P (64.6), Ca (57.3), and Fe (44.6). The Langmuir model showed that the affinity of MG for the surface of SBC was 22.6-times that of CV’s (KL=0.0053l/mg); maximum Langmuir monolayer adsorption capacity of 69.5 mg/g for MG and 49.0 mg/g for CV. Similar functional groups and adsorption mechanisms like hydrogen bonding, π-π interaction, electrostatic interactions, and ion exchanges governed both MG and CV adsorption onto SBC. Both physisorption and chemisorption were involved in both dyes’ adsorption (Redlich-Peterson model: R2> 0.900) Leachability tests showed a dependency of leached metallic ions on the type of dye employed, where ion exchange was dominated by P, Al, Ca, K for MG, and Na, K, Ca for CV. Interestingly, although minimal, the standalone contribution of biochar-free ions on MG and CV decolorization was, respectively, 13% and 7.7% (Fe), 6.7% and 2.3% (K), 2.9% and 0% (Ca), and 0% and 0.8% (Mg), which showed that some adsorption-unrelated mechanism may have also contributed to decolorization of CV and MG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Katheresan, J. Kansedo and S. Y. Lau, J. Environ. Chem. Eng., 6, 4676 (2018).

    Article  CAS  Google Scholar 

  2. M. T. Yagub, T. K. Sen, S. Afroze and H. M. Ang, Adv. Colloid Interface Sci., 209, 172 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. T. Robinson, G. McMullan, R. Marchant and P. Nigam, Bioresour. Technol., 77, 247 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. C. J. Ogugbue and T. Sawidis, Biotechnol. Res. Int., 2011, 1 (2011).

    Article  CAS  Google Scholar 

  5. V. Gupta, I. Ali and D. Mohan, J. Colloid Interface Sci., 265, 257 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. J. Liu, Z. Wang, H. Li, C. Hu, P. Raymer and Q. Huang, Bioresour. Technol., 249, 307 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. P. S. Kumar, S. J. Varjani and S. Suganya, Bioresour. Technol., 250, 716 (2018).

    Article  CAS  Google Scholar 

  8. N. M. Mahmoodi and M. H. Saffar-Dastgerdi, Microchem. J., 145, 74 (2019).

    Article  CAS  Google Scholar 

  9. G. Ohemeng-Boahen, D. D. Sewu and S. H. Woo, Environ. Sci. Pollut. Res., 26, 33030 (2019).

    Article  CAS  Google Scholar 

  10. D. D. Sewu, P. Boakye, H. Jung and S. H. Woo, Bioresour. Technol., 244, 1142 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. D. Mohan, A. Sarswat, Y. S. Ok and C. U. Pittman Jr., Bioresour. Technol., 160, 191 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. D. D. Sewu, H. Jung, S. S. Kim, D. S. Lee and S. H. Woo, Bioresour. Technol., 277, 77 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. P. Boakye, H. N. Tran, D. S. Lee and S. H. Woo, J. Environ. Manage., 233, 165 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. D. D. Sewu, D. S. Lee, H. N. Tran and S. H. Woo, J. Taiwan Inst. Chem. E., 104, 106 (2019).

    Article  CAS  Google Scholar 

  15. H.-O. Chahinez, O. Abdelkader, Y. Leila and H. N. Tran, Environ. Technol. Inno., 19, 100872 (2020).

    Article  Google Scholar 

  16. D. Kalderis, B. Kayan, S. Akay, E. Kulaksız and B. Gözmen, J. Environ. Chem. Eng., 5, 2222 (2017).

    Article  CAS  Google Scholar 

  17. K. Smith, G. Fowler, S. Pullket and N. J. D. Graham, Water Res., 43, 2569 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. B. Xiao, Q. Dai, X. Yu, P. Yu, S. Zhai, R. Liu, X. Guo and H. Chen, J. Hazard. Mater., 343, 347 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. P. Oleszczuk, S. E. Hale, J. Lehmann and G. Cornelissen, Bioresour. Technol., 111, 84 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. N. C. Shiba and F. Ntuli, Waste Manage., 60, 191 (2017).

    Article  CAS  Google Scholar 

  21. K. Phoungthong, H. Zhang, L.-M. Shao and P.-J. He, J. Mater. Cycles Waste Manage., 20, 2089 (2018).

    Article  CAS  Google Scholar 

  22. L. Leng, X. Yuan, H. Huang, J. Shao, H. Wang, X. Chen and G. Zeng, Appl. Surf. Sci., 346, 223 (2015).

    Article  CAS  Google Scholar 

  23. D. D. Sewu, P. Boakye and S. H. Woo, Bioresour. Technol., 224, 206 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. E. Commission, Offic. J. Eur. Comm., 181, 6 (1986).

    Google Scholar 

  25. G. Newcombe, R. Hayes and M. Drikas, Colloids Surf. A, 78, 65 (1993).

    Article  CAS  Google Scholar 

  26. I. Langmuir, J. Am. Chem. Soc., 38, 2221 (1916).

    Article  CAS  Google Scholar 

  27. L. Yao, J. Yang, P. Zhang and L. Deng, Bioresour. Technol., 256, 208 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. H. N. Tran, S.-J. You, A. Hosseini-Bandegharaei and H.-P. Chao, Water Res., 120, 88 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. M. Dubinin, Chem. Rev., 60, 235 (1960).

    Article  CAS  Google Scholar 

  30. T. W. Weber and R. K. Chakravorti, AIChE J., 20, 228 (1974).

    Article  CAS  Google Scholar 

  31. S. K. Low and M. C. Tan, J. Environ. Chem. Eng., 6, 3502 (2018).

    Article  CAS  Google Scholar 

  32. S. Lagergren, SvenVetenskapsakad. Handingarl, 24, 1 (1898).

    Google Scholar 

  33. G. Blanchard, M. Maunaye and G. Martin, Water Res., 18, 1501 (1984).

    Article  CAS  Google Scholar 

  34. Y S. Ho, D. J. Wase and C. Forster, Environ. Technol., 17, 71 (1996).

    Article  CAS  Google Scholar 

  35. W. J. Weber and J. C. Morris, J. Sanit. Eng. Div., Am. Soc. Civ. Eng., 89, 31 (1963).

    Article  Google Scholar 

  36. G. Boyd, A. Adamson and L. Myers Jr., J. Am. Chem. Soc., 69, 2836 (1947).

    Article  CAS  PubMed  Google Scholar 

  37. D. Reichenberg, J. Am. Chem. Soc., 75, 589 (1953).

    Article  CAS  Google Scholar 

  38. G. F. Malash and M. I. El-Khaiary, Chem. Eng. J., 163, 256 (2010).

    Article  CAS  Google Scholar 

  39. C. Yao and T. Chen, Chem. Eng. Res. Des., 119, 87 (2017).

    Article  CAS  Google Scholar 

  40. I. Tan, B. Hameed and A. Ahmad, Chem. Eng. J., 127, 111 (2007).

    Article  CAS  Google Scholar 

  41. S. Schimmelpfennig and B. Glaser, J. Environ. Qual., 41, 1001 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. O. Krüger, A. Grabner and C. Adam, Environ. Sci. Technol., 48, 11811 (2014).

    Article  PubMed  CAS  Google Scholar 

  43. J. Coates, in Encyclopedia of analytical chemistry: Applications, Theory and instrumentation, R. A. Meyers Ed., John Wiley and Sons Ltd, Chichester (2000).

  44. X. Zhao, X. Bu, T. Wu, S.-T. Zheng, L. Wang and P. Feng, Nat. Commun., 4, 1 (2013).

    CAS  Google Scholar 

  45. R. Tabaraki and N. Sadeghinejad, Water Sci. Technol., 75, 2631 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. H. N. Tran, S.-J. You and H.-P. Chao, Korean J. Chem. Eng., 34, 1708 (2017).

    Article  CAS  Google Scholar 

  47. Y. Ho and G. McKay, Can. J. Chem. Eng., 76, 822 (1998).

    Article  CAS  Google Scholar 

  48. E. Castellini, R. Andreoli, G. Malavasi and A. Pedone, Colloids Surf. A., 329, 31 (2008).

    Article  CAS  Google Scholar 

  49. A. R. Abbasi, M. Karimi and K. Daasbjerg, Ultrason. Sonochem., 37, 182 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. A. Wathukarage, I. Herath, M. Iqbal and M. Vithanage, Environ. Geochem. Health, 41, 1647 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. X. Chen, L. Yang, S. C. Myneni and Y. Deng, Chem. Eng. J., 373, 840 (2019).

    Article  CAS  Google Scholar 

  52. K. Singh and S. Arora, Crit. Rev. Environ. Sci. Technol., 41, 807 (2011).

    Article  CAS  Google Scholar 

  53. T. Santhi, S. Manonmani and T. Smitha, J. Hazard. Mater., 179, 178 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. L. Leng, X. Yuan, G. Zeng, J. Shao, X. Chen, Z. Wu, H. Wang and X. Peng, Fuel, 155, 77 (2015).

    Article  CAS  Google Scholar 

  55. M. Yu, Y. Han, J. Li and L. Wang, Chem. Eng. J., 317, 493 (2017).

    Article  CAS  Google Scholar 

  56. E. Akar, A. Altinişik and Y. Seki, Ecol. Eng., 52, 19 (2013).

    Article  Google Scholar 

  57. M. Choudhary, R. Kumar and S. Neogi, J. Hazard. Mater., 392, 122441 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. S.-S. Yang, J.-H. Kang, T.-R. Xie, L. He, D.-F. Xing, N.-Q. Ren, S.-H. Ho and W.-M. Wu, J. Cleaner Prod., 227, 33 (2019).

    Article  CAS  Google Scholar 

  59. S. Madhavakrishnan, K. Manickavasagam, R. Vasanthakumar, K. Rasappan, R. Mohanraj and S. Pattabhi, E-J. Chem., 6, 1109 (2009).

    Article  CAS  Google Scholar 

  60. F. Güzel, H. Sayğılı, G. A. Sayğılı and F. Koyuncu, J. Ind. Eng. Chem., 20, 3375 (2014).

    Article  CAS  Google Scholar 

  61. H. Jung, D. D. Sewu, G. Ohemeng-Boahen, D. S. Lee and S. H. Woo, Waste Manage., 91, 33 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Han Woo.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at u]http://www.springer.com/chemistry/journal/11814.

Supporting Information

11814_2020_727_MOESM1_ESM.pdf

Decolorization of triarylmethane dyes, malachite green, and crystal violet, by sewage sludge biochar: Isotherm, kinetics, and adsorption mechanism comparison

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sewu, D.D., Lee, D.S., Woo, S.H. et al. Decolorization of triarylmethane dyes, malachite green, and crystal violet, by sewage sludge biochar: Isotherm, kinetics, and adsorption mechanism comparison. Korean J. Chem. Eng. 38, 531–539 (2021). https://doi.org/10.1007/s11814-020-0727-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0727-7

Keywords

Navigation