Skip to main content

Advertisement

Log in

Speciation and Transformation of Sulfur in Freshwater Sediments: a Case Study in Southwest China

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Sulfur (S) is one of the most redox-sensitive elements and has a marked impact on the geochemical cycling of biogenic elements in freshwater sediments. Current understanding of the speciation of sedimentary S, and of the processes regulating it, is insufficient. In this study, the speciation and spatial variations of S and iron (Fe) in sediments (soils) from Lake Hongfeng, one of the largest freshwater lakes in Southwest China, were investigated using X-ray absorption near-edge structure (XANES) spectroscopy and diffusive gradient in thin film technique (DGT). The results show that S in sediments and soils was composed of seven fractions in different electronic oxidation states (EOSs), including (i) reduced S (R-S, G1, EOS = − 1), (ii) lowly oxidized S (LO-S, including G2-G5; EOS = 0, 0.5, 2, and 3.7), and (iii) highly oxidized S (HO-S, including G6 and G7; EOS = 5 and 6). Proportional differences of S speciation in sediments and soils indicated that HO-S is largely reduced to LO-S and R-S during depositional processes. The HO-S fraction decreased in the top surface sediments and then increased in the deeper layers, whereas the R-S fraction showed the opposite trend, suggesting that sulfate reduction and re-oxidation processes occurred in the sediments. High ratios of soluble Fe/S provided a favorable foundation for the reduction and burial of sedimentary S. The speciation and spatial variations of S in freshwater sediments are controlled by complex environmental factors, including terrigenous material discharges, water redox conditions, and porewater chemistry (such as for pH, Eh, and reactive Fe). Our study will help to deepen the understanding of the geochemical dynamics of S in the sediments of freshwater ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Canfield, D. E., Thamdrup, B., & Hansen, J. W. (1993). The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction. Geochimica et Cosmochimica Acta, 57, 3867–3883.

    Article  CAS  Google Scholar 

  • Chambers, R. M., Hollibaugh, J. T., Snively, C. S., & Plant, J. N. (2000). Iron, sulfur, and carbon diagenesis in sediments of Tomales Bay, California. Estuaries, 23, 1–9.

    Article  CAS  Google Scholar 

  • Choi, J. H., Park, S. S., & Jaffé, P. R. (2006). Simulating the dynamics of sulfur species and zinc in wetland sediments. Ecological Modelling, 199, 15–323.

    Article  Google Scholar 

  • Couture, R.-M., Gobeil, C., & Tessier, A. (2010). Arsenic, iron and sulfur co-diagenesis in lake sediments. Geochimica et Cosmochimica Acta, 74, 1238–1255.

    Article  CAS  Google Scholar 

  • Davison, W., & Zhang, H. (1994). In-situ speciation measurements of trace components in natural waters using thin film gels. Nature, 367, 546–548.

    Article  CAS  Google Scholar 

  • Ding, S., Sun, Q., Xu, D., Jia, F., He, X., & Zhang, C. (2012). High-resolution simultaneous measurements of dissolved reactive phosphorus and dissolved sulfide: The first observation of their simultaneous release in sediments. Environmental Science & Technology, 46, 8297–8304.

    Article  CAS  Google Scholar 

  • Elsgaard, L., & Jørgensen, B. B. (1992). Anoxie transformations of radiolabeled hydrogen sulfide in marine and freshwater sediments. Geochimica et Cosmochimica Acta, 56, 2425–2435.

    Article  CAS  Google Scholar 

  • Fossing, H., & Jørgensen, B. B. (1989). Measurement of bacterial sulfate reduction in sediments: Evaluation of a single-step chromium reduction method. Biogeochemistry, 8, 205–222.

    Article  CAS  Google Scholar 

  • Haese, R. R., Wallmann, K., Dahmke, A., Kretzmann, U., Müller, P.J., & Schulz, H.D. (1997). Iron species determination to investigate early diagenetic reactivity in marine sediments. Geochimica et Cosmochimica Acta, 61(1), 63–72.

  • Hansel, C. M., Lentini, C. J., Tang, Y., Johnston, D. T., Wankel, S. D., & Jardine, P. M. (2015). Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments. ISME Journal, 9(11), 2400–2412.

    Article  CAS  Google Scholar 

  • Hockin, S. L., & Gadd, G. M. (2003). Linked redox precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial biofilms. Applied & Environmental Microbiology, 69, 7063–7072.

    Article  CAS  Google Scholar 

  • Holmer, M., & Storkholm, P. (2001). Sulphate reduction and sulphur cycling in lake sediments: A review. Freshwater Biology, 46, 431–451.

    Article  CAS  Google Scholar 

  • Holmkvist, L., Ferdelman, T. G., & Jørgensen, B. B. (2011). A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochimica et Cosmochimica Acta, 75, 3581–3599.

    Article  CAS  Google Scholar 

  • Howarth, R. W. (1984). The ecological significance of sulfur in the energy dynamics of salt marsh and coastal marine sediments. Biogeochemistry, 1, 5–27.

    Article  CAS  Google Scholar 

  • Jalilehvand, F. (2006). Sulfur: Not a “silent” element any more. Chemical Society Reviews, 38(18), 1256–1268.

    Article  Google Scholar 

  • Jensen, H. S., Kristensen, P., Jeppesen, E., & Skytthe, A. (1992). Iron:Phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia, 235-236(1), 731–743.

    Article  CAS  Google Scholar 

  • Jørgensen, B. B. (1990). A thiosulfate shunt in the sulfur cycle of marine sediments. Science, 249, 152–154.

    Article  Google Scholar 

  • Kohnen, M. E. L., Sinninghe Damste, J. S., ten Haven, H. L., & de Leeuw, J. W. (1989). Early incorporation of polysulfides in sedimentary organic matter. Nature, 341, 640–641.

    Article  CAS  Google Scholar 

  • Laskov, C., Herzog, C., Lewandowski, J., & Hupfer, M. (2007). Miniaturized photometrical methods for the rapid analysis of phosphate, ammonium, ferrous iron, and sulfate in pore water of freshwater sediments. Limnology & Oceanography Methods, 5(1), 63–71.

    Article  CAS  Google Scholar 

  • Luther, G. W., Ferdelman, T. G., Kostka, J. E., Tsamakis, E. J., & Church, T. M. (1991). Temporal and spatial variability of reduced sulfur species (FeS2, S2O3 2−) and porewater parameters in salt marsh sediments. Biogeochemistry, 14, 57–88.

    Article  CAS  Google Scholar 

  • Luther, G. W., Glazer, B. T., Hohmann, L., Popp, J. I., Taillefert, M., Rozan, T. F., Brendel, P. J., Theberge, S. M., & Nuzzio, D. B. (2001). Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes: Polysulfides as a special case in sediments, microbial mats and hydrothermal vent waters. Journal of Environmental Monitoring, 3, 61–66.

    Article  CAS  Google Scholar 

  • Manceau, A., & Nagy, K. L. (2012). Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy. Geochimica et Cosmochimica Acta, 99, 206–223.

    Article  CAS  Google Scholar 

  • Meyers, P. A., & Ishiwatari, R. (1993). Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry, 20(7), 867–900.

    Article  CAS  Google Scholar 

  • Muyzer, G., & Stams, A. J. (2008). The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 6, 441–454.

    CAS  Google Scholar 

  • Naylor, C., Davison, W., Motelica-Heino, M., Van, D. B. G. A., & Van, D. H. L. M. (2004). Simultaneous release of sulfide with Fe, Mn, Ni and Zn in marine harbour sediments measured using a combined metal/sulfide DGT probe. Science of the Total Environment, 328, 275–286.

    Article  CAS  Google Scholar 

  • Newville, M. (2001). IFEFFIT: Interactive XAFS analysis and FEFF fitting. Journal of Synchrotron Radiation, 8, 322–324.

    Article  CAS  Google Scholar 

  • Nguyen-Thanh, D., & Bandosz, T. J. (2005). Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide. Carbon, 43, 359–367.

    Article  CAS  Google Scholar 

  • Panther, J. G., Bennett, W. W., Welsh, D. T., & Teasdale, P. R. (2014). Simultaneous measurement of trace metal and oxyanion concentrations in water using diffusive gradients in thin films with a Chelex-Metsorb mixed binding layer. Analytical Chemistry, 86, 427–434.

    Article  CAS  Google Scholar 

  • Prietzel, J., Thieme, J., Neuhäusler, U., Susini, J., & Kögel-Knabner, I. (2003). Speciation of sulphur in soils and soil particles by X-ray spectromicroscopy. European Journal of Soil Science, 54, 423–433.

    Article  CAS  Google Scholar 

  • Prietzel, J., Thieme, J., Salomé, M., & Knicker, H. (2007). Sulfur K-edge XANES spectroscopy reveals differences in sulfur speciation of bulk soils, humic acid, fulvic acid, and particle size separates. Soil Biology & Biochemistry, 39, 877–890.

    Article  CAS  Google Scholar 

  • Prietzel, J., Thieme, J., & Salome, M. (2010). Assessment of sulfur and iron speciation in a soil aggregate by combined S and Fe micro-XANES: Microspatial patterns and relationships. Journal of Synchrotron Radiation, 17, 166–172.

    Article  CAS  Google Scholar 

  • Pyzik, A. J., & Sommer, S. E. (1981). Sedimentary iron monosulfides: Kinetics and mechanism of formation. Geochimica et Cosmochimica Acta, 45, 687–698.

    Article  CAS  Google Scholar 

  • Rickard, D. (1995). Kinetics of FeS precipitation: Part 1. Competing reaction mechanisms. Geochimica et Cosmochimica Acta, 59, 4367–4379.

    Article  CAS  Google Scholar 

  • Rickard, D. (1997). Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125° C: The rate equation. Geochimica et Cosmochimica Acta, 61, 115–134.

    Article  CAS  Google Scholar 

  • Rickard, D., & Luther, G. W. (1997). Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125° C: The mechanism. Geochimica et Cosmochimica Acta, 61, 135–147.

    Article  CAS  Google Scholar 

  • Risgaard-Petersen, N., Revil, A., Meister, P., & Nielsen, L. P. (2012). Sulfur, iron, and calcium cycling associated with natural electric currents running through marine sediments. Geochimica et Cosmochimica Acta, 92, 1–13.

    Article  CAS  Google Scholar 

  • Solomon, D., Lehmann, J., Zarruk, K. K., Dathe, J., Kinyangi, J., Liang, B., & Machado, S. (2011). Speciation and long- and short-term molecular-level dynamics of soil organic sulfur studied by X-ray absorption near-edge structure spectroscopy. Journal of Environmental Quality, 40, 704–718.

    Article  CAS  Google Scholar 

  • Stockdale, A., Davison, W., & Zhang, H. (2009). Micro-scale biogeochemical heterogeneity in sediments: A review of available technology and observed evidence. Earth Science Reviews, 92(1–2), 81–97.

    Article  CAS  Google Scholar 

  • Stumm, W., & Baccini, P. (1978). Man-made chemical perturbation of lakes. In A. Lerman (Ed.), Lakes: Chemistry, Geology, Physics (pp. 91–126). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Thamdrup, B. (2000). Bacterial manganese and iron reduction in aquatic sediments. Advances in Microbial Ecology, 16, 41–84.

    CAS  Google Scholar 

  • Urban, N., Brezonik, P., Baker, L., & Sherman, L. (1994). Sulfate reduction and diffusion in sediments of little rock Lake, Wisconsin. Limnology & Oceanography, 39, 797–815.

    Article  CAS  Google Scholar 

  • Vairavamurthy, A., Zhou, W., Eglington, T., & Manowitz, B. (1994). Sulfonates: A novel class of organic sulfur compounds in marine sediments. Geochimica et Cosmochimica Acta, 58, 4681–4687.

    Article  CAS  Google Scholar 

  • Wang, J., Chen, J., Ding, S., Guo, J., Christopher, D., Dai, Z., & Yang, H. (2016). Effects of seasonal hypoxia on the release of phosphorus from sediments in deep-water ecosystem: A case study in Hongfeng lake, Southwest China. Environmental Pollution, 219, 258–265.

    Google Scholar 

  • Wijsman, J. W., Middelburg, J. J., Herman, P. M., Böttcher, M. E., & Heip, C. H. (2001). Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea. Marine Chemistry, 74, 261–278.

    Article  CAS  Google Scholar 

  • Xia, K., Weesner, F., Bleam, W. F., Helmke, P. A., Bloom, P. R., & Skyllberg, U. L. (1998). Xanes studies of oxidation states of sulfur in aquatic and soil humic substances. Soil Science Society of America Journal, 62(5), 1240–1246.

    Article  CAS  Google Scholar 

  • Xu, D., Chen, Y., Ding, S., Sun, Q., Wang, Y., & Zhang, C. (2013). Diffusive gradients in thin films technique equipped with a mixed binding gel for simultaneous measurements of dissolved reactive phosphorus and dissolved iron. Environmental Science & Technology, 47, 10477–10484.

    CAS  Google Scholar 

  • Yao, W., & Millero, F. J. (1996). Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater. Marine Chemistry, 52, 1–16.

    Article  CAS  Google Scholar 

  • Zeng, T., Arnold, W. A., & Toner, B. M. (2013). Microscale characterization of sulfur speciation in lake sediments. Environmental Science & Technology, 47, 1287–1296.

    Article  CAS  Google Scholar 

  • Zhu, M. X., Chen, L. J., Yang, G. P., Huang, X. L., & Ma, C. Y. (2014). Humic sulfur in eutrophic bay sediments: Characterization by sulfur stable isotopes and K-edge XANES spectroscopy. Estuarine Coastal & Shelf Science, 138, 121–129.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Project by MOST of China (No. 2016YFA0601000), the Chinese NSF Project (No. 41403113), and the Science and Technology Project of Guizhou Province ([2015]2001). The authors thank beam-line 4B7A (Beijing Synchrotron Radiation Facility) and BL14W1 (Shanghai Synchrotron Radiation Facility) for providing the beam time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingan Chen.

Electronic supplementary material

ESM 1

(DOC 2037 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chen, J., Guo, J. et al. Speciation and Transformation of Sulfur in Freshwater Sediments: a Case Study in Southwest China. Water Air Soil Pollut 228, 392 (2017). https://doi.org/10.1007/s11270-017-3580-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3580-5

Keywords

Navigation