Skip to main content

Advertisement

Log in

Geochemistry of reduced inorganic sulfur, reactive iron, and organic carbon in fluvial and marine surface sediment in the Laizhou Bay region, China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Understanding the geochemical cycling of sulfur in sediments is important because it can have implications for both modern environments (e.g., deterioration of water quality) and interpretation of the ancient past (e.g., sediment C/S ratios can be used as indicators of palaeodepositional environment). This study investigates the geochemical characteristics of sulfur, iron, and organic carbon in fluvial and coastal surface sediments of the Laizhou Bay region, China. A total of 63 sediment samples were taken across the whole Laizhou Bay marine region and the 14 major tidal rivers draining into it. Acid volatile sulfur, chromium (II)-reducible sulfur and elemental sulfur, total organic carbon, and total nitrogen were present in higher concentrations in the fluvial sediment than in the marine sediment of Laizhou Bay. The composition of reduced inorganic sulfur in surface sediments was dominated by acid volatile sulfur and chromium (II)-reducible sulfur. In fluvial sediments, sulfate reduction and formation of reduced inorganic sulfur were controlled by TOC and reactive iron synchronously. High C/S ratios in the marine sediments indicate that the diagenetic processes in Laizhou Bay have been affected by rapid deposition of sediment from the Yellow River in recent decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aller RC, Heilbrun C, Panzeca C, Zhu Z, Baltzer F (2004) Coupling between sedimentary dynamics, early diagenetic processes, and biogeochemical cycling in the Amazon-Guianas mobile mud belt: coastal French Guiana. Mar Geol 208:331–360

    Article  Google Scholar 

  • Anthony S, William D, Zhang H (2010) Formation of iron sulfide at faecal pellets and other microniches within suboxic surface sediment. Geochim Cosmochim Acta 74:2665–2676

    Article  Google Scholar 

  • Berner RA (1982) Burial of organic carbon and pyrite sulfur in the moden ocean: its geochemical and environmental significance. Am J Sci 282:451–473

    Article  Google Scholar 

  • Berner RA (1984) Sedimentary pyrite formation: an update. Geochim Cosmochim Acta 48:605–615

    Article  Google Scholar 

  • Berner RA, Raiswell R (1983) Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: a new theory. Geochim Cosmochim Acta 47:855–862

    Article  Google Scholar 

  • Bottrell SH, Hatfield D, Bartlett R, Mortimer RJG (2010) Concentration, sulfur isotopic composition and origin of organo-sulfur compounds in pore-waters of a highly polluted raised peatland. Org Geochem 41:55–62

    Article  Google Scholar 

  • Burton ED, Phillips IR, Hawker DW (2005) Reactive sulfide relationships with trace metal extractability in sediments from southern Moreton Bay, Australia. Mar Pollut Bull 50:589–608

    Article  Google Scholar 

  • Canfield DE, Kristensen E, Thamdrup B (2005) The Sulfur Cycle. Adv Mar Biol 48:313–381

    Article  Google Scholar 

  • Coulson JP, Bottrell SH, Lee JA (2005) Recreating atmospheric sulphur deposition histories from peat stratigraphy: diagenetic conditions required for signal preservation and reconstruction of past sulphur deposition in the Derbyshire Peak District, UK. Chem Geol 218:223–248

    Article  Google Scholar 

  • Gerritse RG (1999) Sulphur, organic carbon and iron relationships in estuarine and freshwater sediments: effects of sedimentation rate. Appl Geochem 14:41–52

    Article  Google Scholar 

  • Hedge JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Org Geochem 27:195–212

    Article  Google Scholar 

  • Hedges JI, Ertel JR, Richey JE, Quay PD, Benner R, Strom M, Forsberg B (1994) Origin and processing of organic matter in the Amazon River as indicated by carbohydrates and amino acids. Limnol Oceanogr 39:743–761

    Article  Google Scholar 

  • Hsieh YP, Shieh YN (1997) Analysis of reduced inorganic sulfur by diffusion methods: improved apparatus and evaluation for sulfur isotopic studies. Chem Geol 137:255–261

    Article  Google Scholar 

  • Johnston SG, Burton ED, Aaso T, Tuckerman G (2014) Sulfur, iron and carbon cycling following hydrological restoration of acidic freshwater wetlands. Chem Geol 371:9–26

    Article  Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302

    Article  Google Scholar 

  • Morgan B, Burton ED, Rate AW (2012) Iron monosulfide enrichment and the presence of organosulfur in eutrophic estuarine sediments. Chem Geol 296–297:119–130

    Article  Google Scholar 

  • Morse JW, Berner RA (1995) Water determines sedimentary C/S ratios? Geochim Cosmochim Acta 59:1073–1077

    Article  Google Scholar 

  • Morse JW, Cornwell JC (1987) Analysis and distribution of iron sulfide minerals in recent anoxic marine sediments. Mar Chem 22:55–69

    Article  Google Scholar 

  • Morse JW, Emeis KC (1990) Controls on C/S ratios in hemipelagic sediments. Am J Sci 290:1117–1135

    Article  Google Scholar 

  • Morse JW, Rickard D (2004) Chemical dynamics of sedimentary acid volatile sulfide. Environ Sci Technol 38:131A–136A

    Article  Google Scholar 

  • Mortimer RJG, Galsworthy AMJ, Bottrell SH, Willmot LE, Newton RJ (2011) Experimental evidence for rapid biotic and abiotic reduction of Fe(III) at low temperatures in salt marsh sediments: a possible mechanism for formation of modern sedimentary siderite concretions. Sedimentology 58:1514–1529

    Article  Google Scholar 

  • Pan X, Tang J, Chen Y, Li J, Zhang G (2011) Polychlorinated naphthalenes (PCNs) in riverine and marine sediments of the Laizhou Bay area, North China. Environ Pollut 159:3515–3521

    Article  Google Scholar 

  • Qiao S, Shi X, Zhu A, Liu Y, Bi N, Fang X, Yang G (2010) Distribution and transport of suspended sediments off the Yellow River (Huanghe) mouth and the nearby Bohai Sea. Estuar Coast Shelf S 86:337–344

    Article  Google Scholar 

  • Sheng Y, Fu G, Chen F, Chen J (2011) Geochemical characteristics of inorganic sulfur in Shijing River, South China. J Environ Monitor 13:807–812

    Article  Google Scholar 

  • Sheng Y, Sun Q, Bottrell SH, Mortimer RJG, Shi W (2013a) Anthropogenic impacts on reduced inorganic sulfur and heavy metals in coastal surface sediments, north Yellow Sea. Environ Earth Sci 68:1367–1374

    Article  Google Scholar 

  • Sheng Y, Qu Y, Ding C, Sun Q, Mortimer RJG (2013b) A combined application of different engineering and biological techniques to remediate a heavily polluted river. Ecol Eng 57:1–7

    Article  Google Scholar 

  • Sullivan LA, Bush RT, Fyfe D (2002) Acid sulfate soil drain ooze: distribution, behaviour and implications for acidification and deoxygenation of waterways. In: Lin C, Melville MD, Sullivan LA (eds) Acid sulfate soils in Australia and China. Science Press, Beijing, pp 91–99

    Google Scholar 

  • Thode-Andersen S, Jørgensen BB (1989) Sulfate reduction and the formation of 35S-labelled FeS, FeS2 and S° in coastal marine sediments. Limnol Oceanogr 34:793–806

    Article  Google Scholar 

  • Wallmann K, Hennies K, Klnig I (1993) A new procedure for determining reactive Fe(II) and Fe(III) minerals in sediments. Limnol Oceanogr 38:1803–1812

    Article  Google Scholar 

  • Wang C, Wang X (2007) Spatial distribution of dissolved Pb, Hg, Cd, Cu and As in the Bohai Sea. J Environ Sci-China 19:1061–1066

    Article  Google Scholar 

  • Xue Y, Wu J, Ye S, Zhang Y (2000) Hydrogeological and hydrogeochemical studies for salt water intrusion on the South Coast of Laizhou Bay, China. Groundwater 38:38–45

    Article  Google Scholar 

  • Zhang R, Zhang G, Zheng Q, Tang J, Chen Y, Xu W, Zou Y, Chen X (2012) Occurrence and risks of antibiotics in the Laizhou Bay, China: impacts of river discharge. Ecotox Environ Safe 80:208–215

    Article  Google Scholar 

  • Zhao Z, Tang J, Xie Z, Chen Y, Pan X, Zhong G, Sturm R, Zhang G, Ebinghaus R (2013) Perfluoroalkyl acids (PFAAs) in riverine and coastal sediments of Laizhou Bay, North China. Sci Total Environ 447:415–423

    Article  Google Scholar 

  • Zhong G, Tang J, Zhao Z, Pan X, Chen Y, Li J, Zhang G (2011) Organochlorine pesticides in sediments of Laizhou Bay and its adjacent rivers, North China. Mar Pollut Bull 62:2543–2547

    Article  Google Scholar 

  • Zhu M, Liu J, Yang G, Li T, Yang R (2012) Reactive iron and its buffering capacity towards dissolved sulfide in sediments of Jiaozhou Bay, China. Mar Environ Res 80:46–55

    Article  Google Scholar 

  • Zhu M, Chen L, Yang G, Fan C, Li T (2014) Kinetic characterization on reductive reactivity of iron(III) oxides in surface sediments of the East China Sea and the influence of repeated redox cycles: implications for microbial iron reduction. Appl Geochem 42:16–26

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No.: 41373100 and 40906045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, Y., Sun, Q., Shi, W. et al. Geochemistry of reduced inorganic sulfur, reactive iron, and organic carbon in fluvial and marine surface sediment in the Laizhou Bay region, China. Environ Earth Sci 74, 1151–1160 (2015). https://doi.org/10.1007/s12665-015-4101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4101-8

Keywords

Navigation