Skip to main content
Log in

Preparation and Photocatalytic Activity of Quaternary GO/TiO2/Ag/AgCl Nanocomposites

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A novel quaternary nanocomposites consisting of Ag/AgCl decorated TiO2 introduced on graphene oxide (GO) sheets with high loading of GO (50 wt.%) were prepared for photocatalytic application. The composite powders were synthesized by a facile sol–gel method utilizing polyvinylpyrrolidone (PVP) as a reducing agent to obtain Ag particles and a modified Hummers’ method to acquire GO sheets. The influence of reducing agent concentration and type of TiO2 was investigated. The adsorption properties of the GO/TiO2/Ag/AgCl nanocomposites were examined, and photocatalytic activity was investigated under UV light applying methylene blue (MB) as a model pollutant. The composites displayed great adsorption capability up to 112.6 mgg−1 due to GO. It is shown that the GO/TiO2/Ag/AgCl samples prepared by Degussa P25 TiO2 and with a reduced amount of PVP have the best photocatalytic activity, reaching up to 55% decolorization of methylene blue under UV light. The photocatalytic activity is enhanced by approximately 80% with the addition of GO to the quaternary GO/TiO2/Ag/AgCl composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali, S., Granbohm, H., Ge, Y., Singh, V. K., Nilsen, F., & Hannula, S.-P. (2016). Crystal structure and photocatalytic properties of titanate nanotubes prepared by chemical processing and subsequent annealing. Journal of Materials Science, 51, 7322–7335.

    Article  CAS  Google Scholar 

  • Anandan, S., & Yoon, M. (2003). Photocatalytic activities of the nano-sized TiO2-supported Y-zeolites. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4(1), 5–18.

    Article  CAS  Google Scholar 

  • Anandan, S., Kumar, P. S., Pugazhenthiran, N., Madhavan, J., & Maruthamuthu, P. (2008). Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of acid red 88. Solar Energy Materials and Solar Cells, 92(8), 929–937.

    Article  CAS  Google Scholar 

  • Balachandran, U., & Eror, N. G. (1982). Raman spectra of titanium dioxide. Journal of Solid State Chemistry, 42, 276–282.

    Article  CAS  Google Scholar 

  • Bekyarova, E., Itkis, M. E., Ramesh, P., Berger, C., Sprinkle, M., de Heer, W. A., & Haddon, R. C. (2009). Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. Journal of the American Chemical Society, 131(4), 1336–1337.

    Article  CAS  Google Scholar 

  • Bolotin, K., Sikes, K., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., & Stormer, H. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146(9), 351–355.

    Article  CAS  Google Scholar 

  • Bottger, G. L., & Damsgard, C. V. (1971). Second order Raman spectra of AgCl and AgBr crystals. Solid State Communications, 9, 1277–1280.

    Article  CAS  Google Scholar 

  • Bourlinos, A. B., Gournis, D., Petridis, D., Szabo, T., Szeri, A., & Dekany, I. (2003). Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir, 19(15), 6050–6055.

    Article  CAS  Google Scholar 

  • Chatterjee, D., & Dasgupta, S. (2005). Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 6(2–3), 186–205.

    Article  CAS  Google Scholar 

  • Delekar, S. D., Yadav, H. M., Achary, S. N., Meena, S. S., & Pawar, S. H. (2012). Structural refinement and photocatalytic activity of Fe-doped anatase TiO2 nanoparticles. Applied Surface Science, 263, 536–545.

    Article  CAS  Google Scholar 

  • Eom, D., Prezzi, D., Rim, K. T., Zhou, H., Lefenfeld, M., Xiao, S., Nuckolls, C., Hybertsen, M. S., Heinz, T. F., & Flynn, G. W. (2009). Structure and electronic properties of graphene nanoislands on Co(0001). Nano Letters, 9(8), 2844–2848.

    Article  CAS  Google Scholar 

  • Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communication, 143(1–2), 47–57.

    Article  CAS  Google Scholar 

  • Fujishima, A., Rao, T., & Tryk, D. (2000). Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1(1), 1–21.

    Article  CAS  Google Scholar 

  • Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.

    Article  CAS  Google Scholar 

  • Guardia, L., Villar-Rodil, S., Paredes, J., Rozada, R., Martinez-Alonso, A., & Tascon, J. (2012). UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene-metal nanoparticle hybrids and dye degradation. Carbon, 50(3), 1014–1024.

    Article  CAS  Google Scholar 

  • Haimi, E., Lipsonen, H., Larismaa, J., Kapulainen, M., Krzak-Ros, J., & Hannula, S.-P. (2011). Optical and structural properties of nanocrystalline anatase (TiO2) thin films prepared by non-aqueous sol-gel dip-coating. Thin Solid Films, 519(18), 5882–5886.

    Article  CAS  Google Scholar 

  • He, Y. J., Peng, J. F., Chu, W., Li, Y. Z., & Tong, D. G. (2014). Black mesoporous anatase TiO2 nanoleaves: a high capacity and high rate anode for aqueous Al-ion batteries. Journal of Materials Chemistry A, 2, 1721–1731.

    Article  CAS  Google Scholar 

  • Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339–1339.

    Article  CAS  Google Scholar 

  • Hurum, D. C., Agrios, A. G., Gray, K. A., Rajh, T., & Thurnauer, M. C. (2003). Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. The Journal of Physical Chemistry B, 107(19), 4545–4549.

    Article  CAS  Google Scholar 

  • Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S., & Williams, E. D. (2007). Atomic structure of graphene on SiO2. Nano Letters, 7(6), 1643–1648.

    Article  CAS  Google Scholar 

  • Kakuta, N., Goto, N., Ohkita, H., & Mizushima, T. (1999). Silver bromide as a photocatalyst for hydrogen generation from CH3OH/H2O solution. Journal of Physical Chemistry B, 103(29), 5917–5919.

    Article  CAS  Google Scholar 

  • Kamat, P. V. (2002). Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. The Journal of Physical Chemistry B, 106(32), 7729–7744.

    Article  CAS  Google Scholar 

  • Kovtyukhova, N. (1999). Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials, 11(3), 771–778.

    Article  CAS  Google Scholar 

  • Kundin, K. N., Ozbas, B., Schniepp, H. C., Prudhomme, R. K., Aksay, I. A., & Car, R. (2008). Raman spectra of graphite oxide and functionalized graphene sheets. Nano Letters, 8(1), 36–41.

    Article  Google Scholar 

  • Liu, X., Shen, L., & Hu, Y. (2016). Preparation of TiO2-graphene composite by a two-step solvothermal method and its adsorption-photocatalysis property. Water, Air, & Soil Pollution, 227, 141.

    Article  Google Scholar 

  • Luan, X., Wing, M. T. G., & Wang, Y. (2015). Enhanced photocatalytic activity of graphene oxide/titania nanosheets composites for methylene blue degradation. Materials Science in Semiconductor Processing, 30, 592–598.

    Article  CAS  Google Scholar 

  • Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., Batzill, M. (2014). Why is anatase a better photocatalyst than rutile?—model studies on epitaxial TiO2 films. Scientific Reports, 4.

  • McAllister, M. J., Li, J.-L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J., Herrera-Alonso, M., Milius, D. L., Car, R., Prud’homme, R. K., & Aksay, I. A. (2007). Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials, 19(18), 4396–4404.

    Article  CAS  Google Scholar 

  • Miller, C. J., Yu, H., & Waite, T. (2013). Degradation of rhodamine B during visible light photocatalysis employing Ag@AgCl embedded on reduced graphene oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 435, 147–153.

    Article  CAS  Google Scholar 

  • Minella, M., Sordello, F., & Minero, C. (2017). Photocatalytic process in TiO2/graphene hybrid materials. Evidence of charge separation by electron transfer from reduced graphene oxide to TiO2. Catalysis Today, 281, 29–37.

    Article  CAS  Google Scholar 

  • Mowry, M., Palaniuk, D., Luhrs, C. C., & Osswald, S. (2013). In situ Raman spectroscopy and thermal analysis of the formation of nitrogen-doped graphene from urea and graphite oxide. RSC Advances, 3(44), 21763–21775.

    Article  CAS  Google Scholar 

  • Nguyen-Phan, T.-D., Pham, V. H., Shin, E. W., Pham, H.-D., Kim, S., Chung, J. S., Kim, E. J., & Hur, S. H. (2011). The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chemical Engineering Journal, 170(1), 226–232.

    Article  CAS  Google Scholar 

  • Ohsaka, T., Izumi, F., & Fujiki, Y. (1978). Raman spectrum of anatase TiO2. Journal of Raman Spectroscopy, 7(6), 321–324.

    Article  Google Scholar 

  • Paredes, J. I., Villar-Rodil, S., Martinez-Alonso, A., & Tascon, J. M. D. (2008). Graphene oxide dispersions in organic solvents. Langmuir, 24(19), 10560–10564.

    Article  CAS  Google Scholar 

  • Perera, S. D., Mariano, R. G., Vu, K., et al. (2012). Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catalysis, 2(6), 949–956.

    Article  CAS  Google Scholar 

  • Qiao, Y., Hu, X., Liu, Y., Chen, C., Xu, H., Hou, D., Hu, P., & Huang, Y. (2013). Conformal n-doped carbon on nanoporous TiO2 spheres as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 1(35), 10375–10381.

    Article  CAS  Google Scholar 

  • Rezaei, M., & Salem, S. (2016). Photocatalytic activity enhancement of anatase–graphene nanocomposite for methylene removal: degradation and kinetics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 167, 41–49.

    Article  CAS  Google Scholar 

  • Sobana, N., Muruganadham, M., & Swaminathan, M. (2006). Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes. Journal of Molecular Catalysis A: Chemical, 258(1–2), 124–132.

    Article  CAS  Google Scholar 

  • Spectral Database for Organic Compounds SDBS, SDBS No. 2609, http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_disp.cgi?sdbsno=2609.

  • Stankovich, S., Dikin, D., Dommett, G., Kohlhaas, K., Zimney, E., Stach, E., Piner, R., Nguyen, S., & Ruoff, R. (2006). Graphene-based composite materials. Nature, 442(7100), 282–286.

    Article  CAS  Google Scholar 

  • Vamathevan, V., Amal, R., Beydoun, D., Low, G., & McEvoy, S. (2002). Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. Journal of Photochemistry and Photobiology A: Chemistry, 148(1–3), 233–245.

    Article  CAS  Google Scholar 

  • Wang, P., Huang, B., Qin, X., Zhang, X., Dai, Y., Wei, J., & Whangbo, M.-H. (2008). Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angewandte Chemie International Edition, 47(41), 7931–7933.

    Article  CAS  Google Scholar 

  • Wang, W., Jing, L., Qu, Y., Luan, Y., Fu, H., & Xiao, Y. (2012). Facile fabrication of efficient AgBr-TiO2 nanoheterostructured photocatalyst for degrading pollutants and its photogenerated charge transfer mechanism. Journal of Hazardous Materials, 243, 169–178.

    Article  CAS  Google Scholar 

  • Wang, P., Tang, Y., Dong, Z., Chen, Z., & Lim, T.-T. (2013). Ag-AgBr/TiO2/RGO nanocomposite for visible light photocatalytic degradation of pencillin G. Journal of Materials Chemistry A, 1, 4718–4727.

    Article  CAS  Google Scholar 

  • Williams, G., Seger, B., & Kamt, P. (2008). TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2(7), 1487–1491.

    Article  CAS  Google Scholar 

  • Xing, Y., Li, R., Li, Q., & Yang, J. (2012). A new method of preparation of AgBr/TiO2composites and investigation of their photocatalytic activity. Journal of Nanoparticle Research, 14(12), 1284.

    Article  Google Scholar 

  • Xu, Y., Bai, H., Lu, G., Li, C., & Shi, G. (2008). Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society, 130(18), 5856–5857.

    Article  CAS  Google Scholar 

  • Yadav, H. M., & Kim, J.-S. (2016). Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic performance. Journal of Alloys and Compounds, 688(B), 123–129.

    Article  CAS  Google Scholar 

  • Yadav, H. M., Kolekar, T. V., Barge, A. S., Thorat, N. D., Delekar, S. D., Kim, B. M., & Kim, J. S. (2016). Enhanced visible light photocatalytic activity of Cr3+-doped anatase TiO2 nanoparticles synthesized by sol-gel method. Journal of Materials Science: Materials in Electronics, 27(1), 526–534.

    CAS  Google Scholar 

  • Yan, H., Tao, X., Yang, Z., Li, K., Yang, H., Li, A., & Cheng, R. (2014). Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue. Journal of Hazardous Materials, 268, 191–198.

    Article  CAS  Google Scholar 

  • Yang, L., Jiang, X., Ruan, W., Yang, J., Zhao, B., Xu, W., & Lombardi, J. R. (2009). Charge-transfer-induced surface-enhanced raman scattering on Ag-TiO2 nanocomposites. Journal of Physical Chemistry C, 113, 16226–16231.

    Article  CAS  Google Scholar 

  • Zhang, H., Lv, X., Li, Y., Wang, Y., & Li, J. (2010). P25-graphene composite as a high performance photocatalyst. ACS Nano, 4(1), 380–386.

    Article  CAS  Google Scholar 

  • Zhang, H., Fan, X., Quan, X., Chen, S., & Yu, H. (2011a). Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light. Environmental Science & Technology, 45(13), 5731–5736.

    Article  CAS  Google Scholar 

  • Zhang, W., Zhou, C., Zhou, W., Lei, A., Zhang, Q., Wan, Q., & Zou, B. (2011b). Fast and considerable adsorption of methylene blue dye onto graphene oxide. Bulletin of Environmental Contamination and Toxicology, 87(1), 86–90.

    Article  CAS  Google Scholar 

  • Zhou, K., Zhu, Y., Yang, X., Jiang, Z., & Li, C. (2011). Preparation of graphene-TiO2 composites with enhanced photocatalytic activity. New Journal of Chemistry, 35, 353–359.

    Article  CAS  Google Scholar 

  • Zhu, Y., Wang, Y., Yao, W., Zong, R., & Zhu, Y. (2015). New insights into the relationship between photocatalytic activity and TiO2-GR composites. RSC Advances, 5, 29201–2920.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the facilities provided by Aalto University Nanomicroscopy Center (Aalto-NMC) for FTIR and UV/vis spectroscopy measurements. Raman spectroscopy work was performed at the Low Temperature Laboratory at Aalto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrika Granbohm.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granbohm, H., Kulmala, K., Iyer, A. et al. Preparation and Photocatalytic Activity of Quaternary GO/TiO2/Ag/AgCl Nanocomposites. Water Air Soil Pollut 228, 127 (2017). https://doi.org/10.1007/s11270-017-3313-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3313-9

Keywords

Navigation