Skip to main content

Advertisement

Log in

State of the Art of Phytoremediation in Brazil—Review and Perspectives

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The pollution of terrestrial and aquatic environments with heavy metals is a serious concern on a worldwide scale. Trace elements can be highly toxic and carcinogenic for human health while also detrimental to animal and plant life of ecosystems surrounding contamination hotspots. Phytoremediation is a low-cost and environment-friendly plant-based technique to alleviate polluted areas, which constitutes a viable alternative to other complex, costly, and often harmful traditional methods. Phytoremediation is particularly interesting for Brazil, given the country’s rich biodiversity and climate. This mini-review covers some of the most important results in phytoremediation studies carried out in Brazil to date, with a particular focus on the potential of the Brazilian flora for phytostabilization and phytoextraction, the two main subcategories of phytoremediation. Moreover, it includes data from two previously unpublished trials about phytoremediation of metal-polluted soil and water with vetiver grass and four wetland macrophytes (water hyacinth, creeping river grass, alligator weed, and water lettuce).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869–881. doi:10.1016/j.chemosphere.2013.01.075.

    Article  CAS  Google Scholar 

  • Alloway, B. (2013). Heavy Metals in Soils. (B. J. Alloway, Ed.) Heavy metals in soils (Vol. 22). Dordrecht: Springer Netherlands. doi:10.1007/978-94-007-4470-7

  • Andrade, J. C. da M., Tavares, S. R. de L., & Mahler, C. F. (2007). Fitorremediação: o uso de plantas na melhoria da qualidade ambiental. São Paulo: Oficina de Textos.

  • Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery, 1(2), 81–126. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Terrestrial+higher+plants+which+hyperaccumulate+metallic+elements#5

  • Bech, J., Duran, P., Roca, N., Poma, W., Sánchez, I., Barceló, J., et al. (2012). Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes. Journal of Geochemical Exploration, 113, 106–111. doi:10.1016/j.gexplo.2011.04.007.

    Article  CAS  Google Scholar 

  • Bhargava, A., Carmona, F. F., Bhargava, M., & Srivastava, S. (2012). Approaches for enhanced phytoextraction of heavy metals. Journal of Environmental Management, 105, 103–120. doi:10.1016/j.jenvman.2012.04.002.

    Article  CAS  Google Scholar 

  • Brooks, R. R. (1998). Plants that hyperaccumulate heavy metals. Wallingford: CAB Internacional.

    Google Scholar 

  • Buendía-González, L., Orozco-Villafuerte, J., Cruz-Sosa, F., Barrera-Díaz, C. E., & Vernon-Carter, E. J. (2010). Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresource Technology, 101(15), 5862–5867. doi:10.1016/j.biortech.2010.03.027.

    Article  Google Scholar 

  • CETESB. (2005). Valores orientadores para solo e água subterrânea no Estado de São Paulo. São Paulo.

  • CETESB. (2013). Texto explicativo—relação de áreas contaminadas e reabilitadas no Estado de São Paulo. São Paulo.

  • CETESB. (2014). Valores orientadores para solo e água subterrânea no estado de SP (Vol. 124). São Paulo.

  • Chaves, L. H. G., Mesquita, E. F., Araujo, D. L., & França, C. P. (2010). Crescimento, distribuiçao e acúmulo de cobre e zinco em plantas de pinhão-manso. Revista Ciência Agronômica, 41(2), 167–176.

    Article  Google Scholar 

  • Chaves, L. H. G., & Souza, R. S. (2014). Crescimento, distribuição e acumulação de cádmio em plantas de Jatropha curcas. Revista de Ciências Agrárias, 37(3), 286–291.

    Google Scholar 

  • Chaves, T. A., & Andrade, A. G. (2013). Capim vetiver: produção de mudas e uso no controle da erosão e na recuperação de áreas degradadas. Rio de Janeiro.

  • Chehregani, A., Noori, M., & Yazdi, H. L. (2009). Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotoxicology and Environmental Safety, 72(5), 1349–1353. doi:10.1016/j.ecoenv.2009.02.012.

    Article  CAS  Google Scholar 

  • Cohen, T., Hee, S. S. Q., & Ambrose, R. F. (2001). Trace metals in fish and invertebrates of three California Coastal Wetlands. Marine Pollution Bulletin, 42, 224–232. doi:10.1016/S0025-326X(00)00146-6.

    Article  CAS  Google Scholar 

  • CONAMA. Resolução CONAMA No 420, de 28 de dezembro de 2009 (2009).

  • CONAMA. Resolução CONAMA No 463, de 29 de julho de 2014. (2014).

  • De Caires, S. M., Fontes, M. P. F., Fernandes, R. B. A., Neves, J. C. L., & Fontes, R. L. F. (2011). Desenvolvimento de mudas de cedro-rosa em solo contaminado com cobre: tolerância e potencial para fins de fitoestabilização do solo. Revista Árvore, 35(6), 1181–1188. doi:10.1590/S0100-67622011000700004.

    Google Scholar 

  • De Morais, J. L., & Zamora, P. P. (2005). Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates. Journal of Hazardous Materials, 123(1-3), 181–186.

    Article  Google Scholar 

  • Dickinson, N. M., Baker, A. J. M., Doronila, A., Laidlaw, S., & Reeves, R. D. (2009). Phytoremediation of inorganics: realism and synergies. International Journal of Phytoremediation, 11(2), 97–114. doi:10.1080/15226510802378368.

    Article  CAS  Google Scholar 

  • Dinh, N. T., Vu, D. T., Mulligan, D., & Nguyen, A. V. (2015). Accumulation and distribution of zinc in the leaves and roots of the hyperaccumulator Noccaea caerulescens. Environmental and Experimental Botany, 110, 85–95. doi:10.1016/j.envexpbot.2014.10.001.

    Article  CAS  Google Scholar 

  • Fumagalli, P., Comolli, R., Ferrè, C., Ghiani, A., Gentili, R., & Citterio, S. (2014). The rotation of white lupin (Lupinus albus L.) with metal-accumulating plant crops: a strategy to increase the benefits of soil phytoremediation. Journal of Environmental Management, 145, 35–42. doi:10.1016/j.jenvman.2014.06.001.

    Article  CAS  Google Scholar 

  • Galal, T. M., & Shehata, H. S. (2015). Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators, 48, 244–251. doi:10.1016/j.ecolind.2014.08.013.

    Article  CAS  Google Scholar 

  • Giulietti, A. M., Harley, R. M., Queiroz, L. P., Wanderley, M. das G., & Berg, C. Van Den. (2005). Biodiversidade e conservação das plantas no Brasil. Megadiversidade, 1(1), 52–61.

  • INEA. (2014). Gerenciamento de áreas contaminadas do estado do Rio de Janeiro. Rio de Janeiro.

  • Karami, N., Clemente, R., Moreno-Jiménez, E., Lepp, N. W., & Beesley, L. (2011). Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. Journal of Hazardous Materials, 191(1-3), 41–8. doi:10.1016/j.jhazmat.2011.04.025.

    Article  CAS  Google Scholar 

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, 686–692. doi:10.1016/j.envpol.2007.06.056.

    Article  CAS  Google Scholar 

  • Lee, S.-H., Ji, W., Lee, W.-S., Koo, N., Koh, I. H., Kim, M.-S., & Park, J.-S. (2014). Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings. Journal of Environmental Management, 139, 15–21. doi:10.1016/j.jenvman.2014.02.019.

    Article  CAS  Google Scholar 

  • Lee, S.-H., Kim, E. Y., Park, H., Yun, J., & Kim, J.-G. (2011). In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma, 161(1-2), 1–7. doi:10.1016/j.geoderma.2010.11.008.

    Article  Google Scholar 

  • Leung, H. M., Wang, Z. W., Ye, Z. H., Yung, K. L., Peng, X. L., & Cheung, K. C. (2013). Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: a review. Pedosphere, 23, 549–563. doi:10.1016/S1002-0160(13)60049-1.

    Article  CAS  Google Scholar 

  • Li, Z., Wu, L., Hu, P., Luo, Y., Zhang, H., & Christie, P. (2014). Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola. Environmental pollution (Barking, Essex : 1987), 189, 176–183. doi:10.1016/j.envpol.2014.02.034.

    Article  CAS  Google Scholar 

  • Lin, C., Liu, J., Liu, L., Zhu, T., Sheng, L., & Wang, D. (2009). Soil amendment application frequency contributes to phytoextraction of lead by sunflower at different nutrient levels. Environmental and Experimental Botany, 65(2-3), 410–416. doi:10.1016/j.envexpbot.2008.12.003.

    Article  CAS  Google Scholar 

  • Lotfy, S. M., & Mostafa, a. Z. (2014). Phytoremediation of contaminated soil with cobalt and chromium. Journal of Geochemical Exploration, 144, 367–373. doi:10.1016/j.gexplo.2013.07.003.

    Article  CAS  Google Scholar 

  • Magalhães, M. O. L., do A Sobrinho, N. M. B., Santos, F. S., & Mazur, N. (2011). Potencial de duas espécies de eucalipto na fitoestabilização de solo contaminado com zinco. Revista Ciência Agronômica, 42(3), 805–812.

    Article  Google Scholar 

  • Marques, A. P. G. C., Rangel, A. O. S. S., & Castro, P. M. L. (2009). Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology, 39(8), 622–654. doi:10.1080/10643380701798272.

    Article  CAS  Google Scholar 

  • Marques, M., Aguiar, C. R. C., & da Silva, J. J. L. S. (2011). Technical challenges and social, economic and regulatory barriers to phytoremediation of contaminated soils. Revista Brasileira de Ciência do Solo, 35(1), 1–11. doi:10.1590/S0100-06832011000100001.

    Article  CAS  Google Scholar 

  • Melgar-Ramírez, R., González, V., Sánchez, J. A., & García, I. (2012). Effects of application of organic and inorganic wastes for restoration of sulphur-mine soil. Water, Air, & Soil Pollution, 223(9), 6123–6131. doi:10.1007/s11270-012-1345-8.

    Article  Google Scholar 

  • Mench, M. J., Manceau, A., Vangronsveld, J., Clijsters, H., & Mocquot, B. (2000). Capacity of soil amendments in lowering the phytoavailability of sludge-borne zinc. Agronomie, 20(4), 383–397. doi:10.1051/agro:2000135.

    Article  Google Scholar 

  • Mendes, P. L. A., Meyer, S. T., Noronha, I. A. S., Gomes, S. M. A., & Santos, M. H. (2009). Alteraçoes morfológicas em Eichhornia crassipes (aguapé) (Mart.) Solms-Laubach (Pontederiaceae), exposta a elevadas concentrações de mercúrio. Pesticidas: Revista de Ecotoxicologia e Meio Ambiente, 19, 29–38.

    CAS  Google Scholar 

  • Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environmental Health Perspectives, 116(3), 278–283. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2265025&tool=pmcentrez&rendertype=abstract

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60(1-4), 193–207. doi:10.1016/S0013-7952(00)00101-0.

    Article  Google Scholar 

  • Nagajyoti, P. C., Sreekanth, T. V. M., & Lee, K. D. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8(3), 199–216. doi:10.1007/s10311-010-0297-8.

    Article  CAS  Google Scholar 

  • Nanda Kumar, P. B. A., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: the use of plants to remove heavy metals from soils. Environmental Science & Technology, 29(5), 1232–1238.

    Article  Google Scholar 

  • Naseem, S., Bashir, E., Shireen, K., & Shafiq, S. (2009). Soil-plant relationship of Pteropyrum olivieri, a serpentine flora of Wadh, Balochistan, Pakistan and its use in mineral prospecting. Studia Universitatis Babes-Bolyai, Geologia, 54(2), 33–39. doi:10.5038/1937-8602.54.2.7.

    Article  Google Scholar 

  • Nordberg, G., Fowler, B. A., Nordberg, M., & Friberg, L. (2009). Handbook on the toxicology of metals. (G. F. Nordberg, B. A. Fowler, M. Nordberg, & L. T. Friberg, Eds.) (Third.). London: Academic Press.

  • Novo, L. A. B., Covelo, E. F., & González, L. (2013a). Phytoremediation of amended copper mine tailings with Brassica juncea. International Journal of Mining, Reclamation and Environment, 27(April), 215–226. doi:10.1080/17480930.2013.779061.

    Article  CAS  Google Scholar 

  • Novo, L. A. B., Covelo, E. F., & González, L. (2013b). The potential of Salvia verbenaca for phytoremediation of copper mine tailings amended with technosol and compost. Water, Air, & Soil Pollution, 224(4), 1513. doi:10.1007/s11270-013-1513-5.

    Article  Google Scholar 

  • Novo, L. A. B., Mahler, C. F., & González, L. (2015). Plants to harvest rhenium: scientific and economic viability. Environmental Chemistry Letters, 13(4), 439–445. doi:10.1007/s10311-015-0517-3.

    Article  CAS  Google Scholar 

  • Oliveira, J. A. De, Cambraia, J., Cano, M. A. O., & Jordão, C. P. (2001). Absorção e acúmulo de cádmio e seus efeitos sobre o crescimento relativo de plantas de aguapé e de salvínia. Revista Brasileira de Fisiologia Vegetal, 13(3). doi:10.1590/S0103-31312001000300008.

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1-4), 105–126. doi:10.1007/s11270-007-9401-5.

    Article  CAS  Google Scholar 

  • Park, J. H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N., & Chung, J.-W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 185(2-3), 549–574. doi:10.1016/j.jhazmat.2010.09.082.

    Article  CAS  Google Scholar 

  • Pavel, P.-B., Puschenreiter, M., Wenzel, W. W., Diacu, E., & Barbu, C. H. (2014). Aided phytostabilization using Miscanthus sinensis × giganteus on heavy metal-contaminated soils. The Science of the Total Environment, 479–480, 125–131. doi:10.1016/j.scitotenv.2014.01.097.

    Article  Google Scholar 

  • Pedro, C. a., Santos, M. S. S., Ferreira, S. M. F., & Gonçalves, S. C. (2013). The influence of cadmium contamination and salinity on the survival, growth and phytoremediation capacity of the saltmarsh plant Salicornia ramosissima. Marine Environmental Research, 92, 197–205. doi:10.1016/j.marenvres.2013.09.018.

    Article  CAS  Google Scholar 

  • Peijnenburg, W. J. G., & Jager, T. (2003). Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicology and Environmental Safety, 56(1), 63–77.

    Article  CAS  Google Scholar 

  • Pereira, K. de L., Pinto, L. V. A., & Ademir, J. P. (2013). Potencial fitorremediador das plantas predominantes na área do lixão de Inconfidentes / MG. Revista Agrogeoambiental, 1, 25–29.

    Google Scholar 

  • Pérez-Esteban, J., Escolástico, C., Moliner, A., Masaguer, A., & Ruiz-Fernández, J. (2013). Phytostabilization of metals in mine soils using Brassica juncea in combination with organic amendments. Plant and Soil, 377(1-2), 97–109. doi:10.1007/s11104-013-1629-9.

    Article  Google Scholar 

  • Pirzadah, T. B., Malik, B., Inayatullah, T., Kumar, M., Varma, A., & Reiaz, R. U. I. (2015). Phytoremediation: an eco-friendly green technology for pollution prevention, control and remediation. In K. R. Hakeem, M. Sabir, M. Öztürk, & A. R. Mermut (Eds.), Soil remediation and plants: prospects and challenges (pp. 107–129). New York: Elsevier. doi:10.1016/B978-0-12-799937-1.01001-9.

    Chapter  Google Scholar 

  • Pivetz, B. (2001). Phytoremediation of contaminated soil and ground water at hazardous waste sites. EPA Ground Water Issue, 1–36.

  • Pollard, A. J., Reeves, R. D., & Baker, A. J. M. (2014). Facultative hyperaccumulation of heavy metals and metalloids. Plant Science, 217–218, 8–17. doi:10.1016/j.plantsci.2013.11.011.

    Article  Google Scholar 

  • Prasad, M. N. V., Sajwan, K. S., & Naidu, R. (2006). Trace elements in the environment: biogeochemistry, biotechnology, and bioremediation. Boca Raton: CRC Press.

    Google Scholar 

  • Preussler, K. H. (2014). Evaluation of a wetland system in the treatment of landfill leachate. UFRJ/COPPE.

  • Preussler, K. H., Mahler, C. F., & Maranho, L. T. (2015). Performance of a system of natural wetlands in leachate of a posttreatment landfill. International Journal of Environmental Science and Technology, 12(8), 2623–2638. doi:10.1007/s13762-014-0674-0.

    Article  CAS  Google Scholar 

  • Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science, 180(2), 169–81. doi:10.1016/j.plantsci.2010.08.016.

    Article  CAS  Google Scholar 

  • Raskin, I., & Ensley, B. D. (2000). Phytoremediation of toxic metals: using plants to clean up the environment. New York: Wiley-Interscience.

    Google Scholar 

  • Reeves, R. D., & Baker, A. J. M. (2000). Metal-accumulation plants. In I. Raskin & B. D. Ensllet (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment (pp. 193–230). New York: John Wiley and Sons.

    Google Scholar 

  • Roccotiello, E., Serrano, H. C., Mariotti, M. G., & Branquinho, C. (2014). Nickel phytoremediation potential of the Mediterranean Alyssoides utriculata (L.) Medik. Chemosphere. doi:10.1016/j.chemosphere.2014.02.031.

    Google Scholar 

  • Romeiro, S., Lagôa, A. M. M. A., Furlani, P. R., Abreu, C. A., & Pereira, B. F. F. (2007). Absorção de chumbo e potencial de fitorremediação de Canavalia ensiformes L. Bragantia, 66(2), 327–334. doi:10.1590/S0006-87052007000200017.

    Article  CAS  Google Scholar 

  • Santos, C. F., & Novak, E. (2013). Plantas nativas do cerrado e possibilidades em fitorremediação. Revista de Ciências Ambientais, 7(1), 67–78.

    Google Scholar 

  • Santos, C. H., Garcia, A. luis de O., Calonego, J. C., Sérgio, T. C., Rigolin, I. M., & Spósito, T. H. N. (2012). Utilização da mucuna preta (Mucuna aterrima Piper & Tracy) para a fitorremediação de solo contaminado por chumbo. Revista Agro@ambiente On-line, 6(3), 215–221.

  • Saturnino, H. M., Pacheco, D. D., Kakida, J., Tominaga, N., & Gonçalves, N. P. (2005). Cultura do pinhao-manso (Jatropha curca L.). Informe Agropecuário, 26(229), 44–78.

    Google Scholar 

  • Seth, C. S., Remans, T., Keunen, E., Jozefczak, M., Gielen, H., Opdenakker, K., et al. (2012). Phytoextraction of toxic metals: a central role for glutathione. Plant, Cell & Environment, 35(2), 334–346. doi:10.1111/j.1365-3040.2011.02338.x.

    Article  CAS  Google Scholar 

  • Sheoran, V., Sheoran, A. S., & Poonia, P. (2009). Phytomining: A review. Minerals Engineering, 22(12), 1007–1019. doi:10.1016/j.mineng.2009.04.001.

    Article  CAS  Google Scholar 

  • Silva, P. C. C., Jesus, F. N., Alves, A. C., De Jesus, C. A. S., & Santos, A. R. (2013). Crescimento de plantas de girassol cultivadas em ambiente contaminado por chumbo. Bioscience Journal, 29, 1576–1586.

    Google Scholar 

  • Sirguey, C., & Ouvrard, S. (2013). Contaminated soils salinity, a threat for phytoextraction? Chemosphere, 91(3), 269–274. doi:10.1016/j.chemosphere.2012.11.024.

    Article  CAS  Google Scholar 

  • Sun, Y., Zhou, Q., & Diao, C. (2008). Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresource Technology, 99(5), 1103–10. doi:10.1016/j.biortech.2007.02.035.

    Article  CAS  Google Scholar 

  • Tavares, S. R. de L. (2009). Phytoremediation of metal polluted soils and waters. UFRJ/COPPE.

  • Tavares, S. R. L., Oliveira, S. A., & Salgado, C. M. (2013). Avaliação de espécies vegetais na fitorremediação de solos contaminados por metais pesados. HOLOS, 5, 80–97.

    Article  Google Scholar 

  • Vamerali, T., Bandiera, M., & Mosca, G. (2009). Field crops for phytoremediation of metal-contaminated land. A review. Environmental Chemistry Letters, 8(1), 1–17. doi:10.1007/s10311-009-0268-0.

    Article  Google Scholar 

  • van der Ent, A., Baker, A. J. M., Reeves, R. D., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil, 362(1-2), 319–334. doi:10.1007/s11104-012-1287-3.

    Article  Google Scholar 

  • Van Nevel, L., Mertens, J., Oorts, K., & Verheyen, K. (2007). Phytoextraction of metals from soils: how far from practice? Environmental Pollution, 150(1), 34–40. doi:10.1016/j.envpol.2007.05.024.

    Article  Google Scholar 

  • Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., et al. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16(7), 765–794. doi:10.1007/s11356-009-0213-6.

    Article  CAS  Google Scholar 

  • Verbruggen, N., Hermans, C., & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 181(4), 759–776. doi:10.1111/j.1469-8137.2008.02748.x.

    Article  CAS  Google Scholar 

  • Wei, S., Zhou, Q., & Wang, X. (2005). Identification of weed plants excluding the uptake of heavy metals. Environment International, 31, 829–834. doi:10.1016/j.envint.2005.05.045.

    Article  Google Scholar 

  • Wolff, G., Assis, L. R., Pereira, G. C., Carvalho, J. G., & Castro, E. M. (2009). Efeitos da toxicidade do zinco em folhas de Salvinia auriculata cultivadas em solução nutritiva. Planta Daninha, 27(1), 133–137. doi:10.1590/S0100-83582009000100017.

    Article  Google Scholar 

  • Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., & Ruan, C. (2010). A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 174(1-3), 1–8. doi:10.1016/j.jhazmat.2009.09.113.

    Article  CAS  Google Scholar 

  • Yang, S., Liang, S., Yi, L., Xu, B., Cao, J., Guo, Y., & Zhou, Y. (2013). Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science & Engineering, 8(3), 394–404. doi:10.1007/s11783-013-0602-4.

    Article  Google Scholar 

  • Zhang, S., Lin, H., Deng, L., Gong, G., Jia, Y., Xu, X., et al. (2013). Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L. Ecological Engineering, 51, 133–139. doi:10.1016/j.ecoleng.2012.12.080.

    Article  Google Scholar 

  • Zhao, G. Q., Ma, B. L., & Ren, C. Z. (2007). Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. Crop Science, 47(1), 123–131. doi:10.2135/cropsci2006.06.0371.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the funding agencies CNPq, CAPES, DAAD, and FAPERJ for the financial support and scholarships granted. Luís A. B. Novo acknowledges the support of the Portuguese Foundation for Science and Technology (FCT) under grant no. SFRH/BPD/103476/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís A. B. Novo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardino, C.A.R., Mahler, C.F., Preussler, K.H. et al. State of the Art of Phytoremediation in Brazil—Review and Perspectives. Water Air Soil Pollut 227, 272 (2016). https://doi.org/10.1007/s11270-016-2971-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2971-3

Keywords

Navigation