Skip to main content
Log in

Copper Biogeochemistry in Response to Rhizosphere Soil Processes Under Four Native Plant Species Growing Spontaneously in an Abandoned Mine Site in NE Brazil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

We evaluated the biogeochemical processes occurring in the rhizosphere of different native plants growing spontaneously in a copper-contaminated soil in an abandoned mine site in NE Brazil. We also assessed the effects that these processes have on copper mobility and toxicity and discuss the potential use of the plants as pioneer species in restoration programs. For these purposes, we determined chemical (pH, macronutrients, % TOC, and % TIC) and mineralogical (XRD) properties in both rhizosphere and nonrhizosphere soils (bulk soil), and we used the sequential extraction method (SEM) to extract copper from both soils. The study findings show that the plants have greatly altered the physicochemical characteristics of the soil that is directly influenced by their roots. Different plant species appear to act through different processes, thus altering various soil components and affecting the biogeodynamic cycling of essential nutrients and copper. The changes in the physical-chemical characteristics of the rhizosphere affected copper dynamics, mainly manifested as significantly lower concentrations of potentially bioavailable copper, i.e., exchangeable and carbonate-associated copper, in this soil fraction. The concentration of copper associated with noncrystalline Fe oxides was also higher in the rhizosphere, thus enhancing the immobilization and probably minimizing the risks of copper toxicity and mobility. The biogeochemical processes observed in the rhizosphere of the species under study seem to indicate that the plants promote phytostabilization of copper in their rhizosphere zone, and they thus show desirable characteristics for use in phytoremediation programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad, W., Singh, B., Dijkstra, F. A., & Dalal, R. C. (2013). Inorganic and organic carbon dynamics in a limed acid soil are mediated by plants. Soil Biology and Biochemistry, 57, 549–555.

    Article  CAS  Google Scholar 

  • Assadian, N., & Fenn, L. B. (2001). Rhizosphere chemical changes enhance heavy metal absorption by plants growing in calcareous soils. In G. R. Gobran, W. W. Wenzel, & E. Lombi (Eds.), Trace elements in the rhizosphere. Boca Raton: CRC Press.

    Google Scholar 

  • Austruy, A., Shahid, M., Xiong, T., Castree, M., Payre, V., Niazi, N. K., et al. (2014). Mechanisms of metal-phosphates formation in the rhizosphere soils of pea and tomato: environmental and sanitary consequences. Journal of Soils and Sediments, 14, 666–678.

    Article  Google Scholar 

  • Badalucco, L., & Nannipieri, P. (2007). Nutrient transformation in the rhizosphere. In R. Pinton, Z. Varanini, & P. Nannipieri (Eds.), The rhizosphere: biochemistry and organic substances at the soil-plant interface (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Bakhshandeh, S. K. F., Dordipour, E., Olamaei, M., & Kehl, M. (2011). Comparing the weathering of soil and sedimentary palygorskite in the rhizosphere zone. Applied Clay Science, 54, 235–241.

    Article  CAS  Google Scholar 

  • Bonneville, S., Morgan, D. J., Schmalenberger, A., Bray, A., Brown, A., Banwart, S. A., et al. (2011). Tree-mycorrhiza symbiosis accelerate mineral weathering: evidences from nanometer-scale elemental fluxes at the hypha–mineral interface. Geochimica et Cosmochimica Acta, 75, 6988–7005.

    Article  CAS  Google Scholar 

  • Bravin, M. N., Marti, A. L., Clairotte, M., & Hinsinger, P. (2009). Rhizosphere alkalisation—a major driver of copper bioavailability over a broad pH range in an acidic, copper-contaminated soil. Plant & Soil, 318, 257–268.

    Article  CAS  Google Scholar 

  • Calvaruso, C., Turpault, M. P., & Frey-Klett, P. (2006). Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Applied Environmental Microbiology, 72, 1258–1266.

    Article  CAS  Google Scholar 

  • Cambardella, C. A., Gajda, A. M., Doran, J. W., Wienhold, B. J., & Kettler, T. A. (2001). Estimation of particulate and total organic matter by weight loss-on-ignition. In R. Lal, M. Kimble, R. F. Follett, & B. A. Stewart (Eds.), Assessment methods for soil carbon. BocaRaton: Lewis Pub.

    Google Scholar 

  • CEC - Commission of the European Communities. (1986). Council directive on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. J. Eur. Commun. L181, (Annex 1A).

  • Cerqueira, B., Covelo, E. F., Andrade, L., & Vega, F. A. (2011). The influence of soil properties on the individual and competitive sorption and desorption of Cu and Cd. Geoderma, 162, 20–26.

    Article  CAS  Google Scholar 

  • Cervantes, A. M., Conesa, H. M., González-Alcarez, M. N., & Álvarez-Rogel, J. (2011). Mobilisation of AS and trace metals in saline, acidic Sopolic Technosols: the role of the rhizosphere and flooding conditions. Journal of Soils and Sediments, 11, 800–814.

    Article  CAS  Google Scholar 

  • Chaignon, V., Quesnoit, M., & Hinsinger, P. (2009). Copper availability and bioavailability are controlled by rhizosphere pH in rape grown in an acidic Cu-contaminated soil. Environmental Pollution, 157, 3363–3369.

    Article  CAS  Google Scholar 

  • Collins, J. J., & Loureiro, R. (1971). A metamorphosed deposit of Precambrian supergene copper. Economic Geology, 66, 192–199.

    Article  Google Scholar 

  • CONAMA – Conselho Nacional do Meio Ambiente/Brasil. (2009). Resolução N°420 – Dispõe sobre critérios e valores orientadores de qualidade do solo. Brasília: Ministério do Meio Ambiente.

    Google Scholar 

  • Cuong, D. T., & Obbard, J. P. (2006). Metal speciation in coastal marine sediments from Singapore using a modified BCR-sequential extraction procedure. Applied Geochemistry, 21(8), 1335–1346.

    Article  CAS  Google Scholar 

  • Davis, K. J., Nealson, K. H., & Luttge, A. (2007). Calcite and dolomite dissolution rates in the context of microbe–mineral surface interactions. Geobiology, 5, 191–205.

    Article  CAS  Google Scholar 

  • Dickinson, N. M., Baker, A. J. M., Doronila, A., Laidlaw, S., & Reeves, R. D. (2009). Phytoremediation of inorganics: realism and synergies. International Journal of Phytoremediation, 11, 97–114.

    Article  CAS  Google Scholar 

  • Dold, B. (2003). Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. Journal of Geochemical Exploration, 80, 55–68.

    Article  CAS  Google Scholar 

  • Fageria, N. K., & Stone, L. F. (2006). Physical, chemical, and biological changes in the rhizosphere and nutrient availability. Journal of Plant Nutrition, 29, 1327–1356.

    Article  CAS  Google Scholar 

  • Faure, G. (1991). Principles and Applications of Inorganic Geochemistry. New Jersey: Prentice Hall.

    Google Scholar 

  • Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring, 4, 823–857.

    Article  CAS  Google Scholar 

  • FUNCEME (2015). Fundação Cearense de Meteorologia e Recursos Hídricos. URL: http://www.funceme.br/index.php/areas/tempo/chuvas-mensais-municipios. Acessed 15 august 2015.

  • Garcia-Salamanca, A. M., Molina-Henares, M. A., Van Dillewijn, P., Solano, J., Pizarro-Tobias, P., Roca, A., et al. (2012). Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil. Microbial Biotechnology, 6, 36–44.

    Article  Google Scholar 

  • Gimeno-García, E., Andreu, V., & Boluda, R. (1995). Distribution of heavy metals in rice farming soils. Archives of Environmental Contamination and Toxicology, 29, 476–483.

    Article  Google Scholar 

  • Gobran, G. R., & Clegg, S. A. (1996). Conceptual model for nutrient availability in the mineral soil-root system. Canadian Journal of Soil Science, 76, 125–131.

    Article  Google Scholar 

  • Hinsinger, P., Elsass, F., Jaillard, B., & Robert, M. (1993). Root-induced irreversible transformation of a trioctahedral mica in the rhizosphere of rape. Journal of Soil Science, 44, 535–545.

    Article  CAS  Google Scholar 

  • Hisinger, P. (2001). Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant & Soil, 237, 173–195.

    Article  Google Scholar 

  • Hisinger, P., Plassard, C., Tang, C., & Jaillard, B. (2003). Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant & Soil, 248, 43–59.

    Article  Google Scholar 

  • Hisinger, P., Bangough, A., Vetterlein, D., & Young, I. M. (2009). Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant & Soil, 321, 117–152.

    Article  Google Scholar 

  • Houben, D., & Sonnet, P. (2012). Zinc mineral weathering as affected by plant roots. Applied Geochemistry, 27, 1587–1592.

    Article  CAS  Google Scholar 

  • IBGE (2012). Brazilian Institute of Geography and Statistics. Technical Handbook of the Brazilian Vegetation, (second ed.), Rio de Janeiro, ISSN 0103-9598.

  • Jackson, M.L. (1979). Soil chemical analysis—advanced course (2nd ed.) 11th Printing. Author, Madison, WI

  • Kabata-Pendias, A. (2010). Trace elements in soils and plants (4th ed.). Boca Raton: CRC Press.

    Book  Google Scholar 

  • Kiers, E. T., & Denison, R. F. (2008). Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annual Review of Ecology, Evolution and Systematics, 39, 215–236.

    Article  Google Scholar 

  • Lin, H., Shi, J., Wu, B., Yang, J., Chen, Y., Zhao, Y., et al. (2010). Speciation and biochemical transformations of sulfur and copper in rice rhizosphere and bulk soil—XANES evidence of sulfur and copper associations. Journal of Soils and Sediments, 10, 907–914.

    Article  CAS  Google Scholar 

  • Liu, Y., Mi, G., Chen, F., Zhang, J., & Zhang, F. (2004). Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant Science, 167, 217–223.

    Article  CAS  Google Scholar 

  • Lombi, E., Wenzel, W. W., Gobran, G. R., & Adriano, D. C. (2000). Dependency of phytoavailability of metals on indigenous and induced rhizosphere processes: A review. In G. R. Gobran, E. Lombi, & W. W. Wenzel (Eds.), Trace elements in the Rhizosphere. Boca Raton: CRC Press.

    Google Scholar 

  • Ma, B., Zhou, Z. Y., Zhang, C. P., & Hu, Y. J. (2009). Inorganic phosphorus fractions in the rhizosphere of xerophytic shrubs in the Alxa Desert. Journal of Arid Environments, 73, 55–61.

    Article  Google Scholar 

  • Martínez-Alcalá, I., Walker, D. J., & Bernal, M. P. (2010). Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation. Ecotoxicology and Environmental Safety, 73, 595–602.

    Article  Google Scholar 

  • Monterrosso, C., Alvarez, E., & Fernandez-Marcos, M. L. (1999). Evaluation of Mehlich 3 reagent as a multielement extractant in mine soils. Land Degradation and Development, 10, 35–47.

    Article  Google Scholar 

  • Moore, J. C., McCann, K., & de Ruiter, P. C. (2007). Soil rhizosphere food webs, their stability, and implications for soil processes in ecosystems. In Z. G. Cardon & J. L. Whitbeck (Eds.), The rhizosphere: an ecological perspective. Oxford: Academic Press.

    Google Scholar 

  • Morse, J. W., & Arvidson, R. S. (2002). The dissolution kinetics of major sedimentary carbonate minerals. Earth-Science Reviews, 58, 51–84.

    Article  CAS  Google Scholar 

  • Mossop, K. F., & Davidson, C. M. (2003). Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Analytica Chimica Acta, 478(1), 111–118.

    Article  CAS  Google Scholar 

  • Oram, L. L., Strawn, D. G., & Moller, G. (2011). Chemical speciation and bioavailability of selenium in the rhizosphere of Symphyotrichum eatonii from reclaimed mine soils. Environmental Science & Technology, 45, 870–875.

    Article  CAS  Google Scholar 

  • Otero, X. L., Álvarez, E., Fernandez-Sanjurjo, M. J., & Macias, F. (2012). Micronutrients and toxic trace metals in the bulk and rhizospheric soil of the spontaneous vegetation at an abandoned copper mine in Galicia (NW Spain). Journal of Geochemical Exploration, 112, 84–92.

    Article  CAS  Google Scholar 

  • Palomo, L., Claassen, N., & Jones, D. L. (2006). Differential mobilization of P in the maize rhizosphere by citric acid and potassium citrate. Soil Biology and Biochemistry, 38, 683–692.

    Article  CAS  Google Scholar 

  • Perlatti, F., Otero, X. L., Macias, F., & Ferreira, T. O. (2014). Geochemical speciation and dynamic of copper in tropical semi-arid soils exposed to metal-bearing mine wastes. Science of the Total Environment, 500–501, 91–102.

    Article  Google Scholar 

  • Perlatti, F., Ferreira, T. O., Roberto, F. A. C., Romero, R. E., Sartor, L. R., & Otero, X. L. (2015). Trace metal/metalloid concentrations in waste rock, soils and spontaneous plants in the surroundings of an abandoned mine in semi-arid NE-Brazil. Environmental Earth Sciences, 74(6), 5427–5441.

    Article  CAS  Google Scholar 

  • Silveira, M. L., Alleoni, L. R. F., O’Connor, G. A., & Chang, A. C. (2006). Heavy metal sequential extraction methods—a modification for tropical soils. Chemosphere, 64, 1929–1938.

    Article  CAS  Google Scholar 

  • Siregar, A., Kleber, M., Mikutta, R., & Jahn, R. (2005). Sodium hypochlorite oxidation reduces soil organic matter concentrations without affecting inorganic soil constituents. European Journal of Soil Science, 56, 481–490.

    Article  CAS  Google Scholar 

  • Soler-Rovira, P., Madejon, E., Madejon, P., & Plaza, C. (2010). In situ remediation of metal-contaminated soils with organic amendments: role of humic acids in copper bioavailability. Chemosphere, 79, 844–849.

    Article  CAS  Google Scholar 

  • Strawn, D. G., & Baker, L. L. (2009). Molecular characterization of copper in soils using X-ray absorption spectroscopy. Environmental Pollution, 157, 2813–2821.

    Article  CAS  Google Scholar 

  • Sun, Y., Zhou, Q., Wang, L., & Liu, W. (2009). Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. Journal of Hazardous Materials, 161, 808–814.

    Article  CAS  Google Scholar 

  • Tarafdar, J. C., & Marschner, H. (1994). Phosphatase activity in the rhizosphere and hyphosphere of VA micorrhizal wheat supplied with inorganic and organic phosphorous. Soil Biology & Biochemistry, 26, 387–395.

    Article  CAS  Google Scholar 

  • Uroz, S., Calvaruso, C., Turpault, M. P., & Frey-Klerr, P. (2009). Mineral weathering by bacteria: ecology, actors and mechanisms. Trends in Microbiology, 17, 378–387.

    Article  CAS  Google Scholar 

  • Wang, J. G., Zhang, F. S., Zhang, X. L., & Cao, Y. P. (2000). Release of potassium from K-bearing minerals: effect of plant roots under P deficiency. Nutrient Cycling in Agroecosystems, 56, 45–52.

    Article  Google Scholar 

Download references

Acknowledgements

F.P. is grateful to the National Department of Mineral Production (DNPM) for financial support and to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for award of a PDSE-PhD grant. X.L.O. is grateful for financial support from the Proyecto PROMETEO (SENESCYT-Ecuador). All authors are grateful to Extrativa Fertilizantes S/A for allowing access to the mine and also to the Brazilian National Council on Scientific and Technological Development (CNPq) for a research grant awarded to T.O.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Perlatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perlatti, F., Ferreira, T.O., Sartor, L.R. et al. Copper Biogeochemistry in Response to Rhizosphere Soil Processes Under Four Native Plant Species Growing Spontaneously in an Abandoned Mine Site in NE Brazil. Water Air Soil Pollut 227, 142 (2016). https://doi.org/10.1007/s11270-016-2840-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2840-0

Keywords

Navigation