Skip to main content
Log in

Projection Pursuit-Based Microcystis Bloom Warning in a Riverside Lake

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A high-dimensional driving function for Microcystis bloom warning was developed, in which both the inhibition and promotion impacts on Microcystis growth activation energy are integrally considered. Five factors, including flow disturbance, temperature, light intensity, nutrient concentration, and biological inhibition, are embedded in the equation, which results in a high-dimensional problem. The projection pursuit principle was applied for dimension reduction to resolve the numerical problem, and an integrated hydro-environmental model was established. Jinshan Lake, a typical riverside lake, was selected as the research area, and six bloom grades were determined for warning analysis. Based on the established model, the processes of Microcystis growth under varied hydrodynamic conditions were simulated. It was found that the established warning model could well reveal the Microcystis bloom processes in Jinshan Lake. The low-water year was characterized by the largest number of days on which Microcystis bloom might occur for its poor water exchange frequency; The areas where Microcystis bloom might occur in the flood seasons of high-water year, common-water year, and low-water year varied with the uneven-distributed dynamic conditions, which were respectively 0.15, 0.91, and 1.26 km2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baek, S. H., Son, M., Jung, S. W., Na, D. H., Cho, H., Yamaguchi, M., Kim, S. W., & Kim, Y. O. (2014). Enhanced species-specific chemical control of harmful and non-harmful algal bloom species by the thiazolidinedione derivative TD49. Journal of Applied Phycology, 26, 311–321. doi:10.1007/s10811-013-0046-z.

    Article  CAS  Google Scholar 

  • Fast, S. A., Kokabian, B., & Gude, V. G. (2014). Chitosan enhanced coagulation of algal turbid waters - comparison between rapid mix and ultrasound coagulation methods. Chemical Engineering Journal, 244, 403–410.

    Article  CAS  Google Scholar 

  • Friedman, J. H., Center, S. L. A., & Tukey, J. W. (1974). A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Computers, C-23, 881–890. doi:10.1109/T-C.1974.224051.

    Article  Google Scholar 

  • Glibert, P., & Burkholder, J. (2011). Harmful algal blooms and eutrophication: “strategies” for nutrient uptake and growth outside the Redfield comfort zone. Chinese Journal of Oceanology and Limnology, 29, 724–738. doi:10.1007/s00343-011-0502-z.

    Article  Google Scholar 

  • Gong, J. (2008). Derivation and biological significance of logistic equation. Journal of Higher Correspondence Education(Natural Sciences), 22, 48–50.

    Google Scholar 

  • Heisler, J., Glibert, P. M., Burkholder, J. M., Anderson, D. M., Cochlan, W., Dennison, W. C., Dortch, Q., Gobler, C. J., Heil, C. A., Humphries, E., Lewitus, A., Magnien, R., Marshall, H. G., Sellner, K., Stockwell, D. A., Stoecker, D. K., & Suddleson, M. (2008). Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae, 8, 3–13.

    Article  CAS  Google Scholar 

  • Hu, H., & Hong, Y. (2008). Algal-bloom control by allelopathy of aquatic macrophytes—a review. Frontiers of Environmental Science & Engineering in China, 2, 421–438. doi:10.1007/s11783-008-0070-4.

    Article  Google Scholar 

  • Hua, W. & Yong, P. (2009). Water Quantity Operation to Achieve Multi-Environmental Goals for a Waterfront Body. Water Resources Management, 23(10), 1951-1968. doi:10.1007/s11269-008-9362-5.

  • Huang, W. (2014). A comprehensive control of cyanobacterial blooms and eutrophication. China Rural Water and Hydropower, 4, 44–50.

    Google Scholar 

  • Huang, C., Li, Y., Yang, H., Sun, D., Yu, Z., Zhang, Z., Chen, X., & Xu, L. (2014). Detection of algal bloom and factors influencing its formation in Taihu Lake from 2000 to 2011 by MODIS. Environmental Earth Sciences, 71, 3705–3714. doi:10.1007/s12665-013-2764-6.

    Article  Google Scholar 

  • Jin, J., Zhang, L., & Pan, J. (2003). Classification model of natural grassland quality based on projection pursuit. Acta Ecologica Sinica, 23, 2184–2188.

    Google Scholar 

  • Kim, J., Kim, J., Park, J., & Lee, C. (2009). Selective control of the Prorocentrum minimum harmful algal blooms by a novel algal-lytic bacterium Pseudoalteromonas haloplanktis AFMB-008041. Marine Biotechnology, 11, 463–472. doi:10.1007/s10126-008-9167-9.

    Article  CAS  Google Scholar 

  • King, S. A. (2014). Hydrodynamic control of filamentous macroalgae in a sub-tropical spring-fed river in Florida, USA. Hydrobiologia, 734, 27–37.

    Article  Google Scholar 

  • Kirk, J. T. O. (1983). Light and photosynthesis in aquatic ecosystem (pp. 113–117). Cambridge: Cambridge University Press.

    Google Scholar 

  • Kong, F. X., & Gao, G. (2005). Hypothesis on cyanobacteria bloom-forming mechanism in large shallow eutrophic lakes. Acta Ecologica Sinica, 25(3), 589–595.

    CAS  Google Scholar 

  • Laue, P., Bahrs, H., Chakrabarti, S., & Steinberg, C. (2014). Natural xenobiotics to prevent cyanobacterial and algal growth in freshwater: contrasting efficacy of tannic acid, gallic acid, and gramine. Chemosphere, 104, 212–220.

    Article  CAS  Google Scholar 

  • Lehman, J. (2014). Understanding the role of induced mixing for management of nuisance algal blooms in an urbanized reservoir. Lake and Reservoir Management, 30, 63–71. doi:10.1080/10402381.2013.872739.

    Article  CAS  Google Scholar 

  • Li, W., Zhang, S., Wu, S., & Xin, H. (1997). Types and district divisions of seawater intrusion concerning southern coast of Laizhou Bay. Journal of Oceanograpgy of Huanghai & Bohai Seas, 15, 16–24.

    Google Scholar 

  • Li, X., Zhang, S., Yuan, Z., & Chen, S. (2004). Cytobiology learning (pp. 84–86). Beijing: Science Press.

    Google Scholar 

  • Liang, P., Wang, X., & Ma, F. (2013). Effect of hydrodynamic conditions on water eutrophication: a review. Journal of Lake Science, 25, 455–462.

    Article  Google Scholar 

  • Liu, X., Zhan, M., & Xie, Z. (2006). Study on evaluative function model of algae blooms in the representative valleys along Three-Gorges area. Environmental Sciences, 27, 669–674.

    Google Scholar 

  • Liu, Y., Wang, Z., Guo, H., Yu, S., & Sheng, H. (2013). Modelling the effect of weather conditions on cyanobacterial bloom outbreaks in lake Dianchi: a rough decision-adjusted logistic regression model. Environmental Modeling and Assessment, 18, 199–207. doi:10.1007/s10666-012-9333-3.

    Article  Google Scholar 

  • Lu, K., Jin, C., & Zhu, J. (2012). Controlling cyanobacteria and its effectiveness: an evaluation in four reservoirs for drinking water supply. In B. Han & Z. Liu (Eds.), Monographiae Biologicae (pp. 343–362). Netherlands: Springer.

    Google Scholar 

  • Lv, Y., Wang, Y., Leng, X., & Tang, L. (2012). Effects of cerium on physiological characteristics and microcystins release of anabaena flos-aquae. Journal of Agro-Environment Science, 31, 1677–1683.

    Google Scholar 

  • Ma, J., Deng, J., Qin, B., & Long, S. (2013). Progress and prospects on cyanobacteria bloom-forming mechanism in lakes. Acta Ecologica Sinica, 33, 3020–3030.

    Article  CAS  Google Scholar 

  • McLean, T., & Sinclair, G. (2012). Harmful algal blooms. In R. Meyers (Ed.), Encyclopedia of sustainability science and technology (pp. 4819–4846). New York: Springer.

    Chapter  Google Scholar 

  • Mendes, L., Vale, L. S., Martins, A., Yokoya, N., Marinho-Soriano, E., & Colepicolo, P. (2012). Influence of temperature, light and nutrients on the growth rates of the macroalga Gracilaria domingensis in synthetic seawater using experimental design. Journal of Applied Phycology, 24, 1419–1426. doi:10.1007/s10811-012-9797-1.

    Article  CAS  Google Scholar 

  • Nagasoe, S., Shikata, T., Yamasaki, Y., Matsubara, T., Shimasaki, Y., Oshima, Y., & Honjo, T. (2010). Effects of nutrients on growth of the red-tide dinoflagellate Gyrodinium instriatum Freudenthal et Lee and a possible link to blooms of this species. Hydrobiologia, 651, 225–238. doi:10.1007/s10750-010-0301-0.

    Article  CAS  Google Scholar 

  • Pattabhi, V., & Gautham, N. (2002). Energy pathways in biology biophysics (pp. 174–198). Netherlands: Springer.

    Google Scholar 

  • Purcell, D., Parsons, S. A., & Jefferson, B. (2013). The influence of ultrasound frequency and power, on the algal species Microcystis aeruginosa, Aphanizomenon flos-aquae, Scenedesmus subspicatus and Melosira sp. Environmental Technology, 34, 2477–2490.

    Article  CAS  Google Scholar 

  • Ren, H., Zhang, P., Liu, C., Xue, Y., & Lian, B. (2010). The potential use of bacterium strain R219 for controlling of the bloom-forming cyanobacteria in freshwater lake. World Journal of Microbiology and Biotechnology, 26, 465–472. doi:10.1007/s11274-009-0192-2.

    Article  CAS  Google Scholar 

  • Roegner, A. F., Brena, B., Gonzalez-Sapienza, G., & Puschner, B. (2014). Microcystins in potable surface waters: toxic effects and removal strategies. Journal of Applied Toxicology, 34, 441–457.

    Article  CAS  Google Scholar 

  • Shao, J., Peng, L., Luo, S., Yu, G., Gu, J., Lin, S., & Li, R. (2013). First report on the allelopathic effect of Tychonema bourrellyi (Cyanobacteria) against Microcystis aeruginosa (Cyanobacteria). Journal of Applied Phycology, 25, 1567–1573. doi:10.1007/s10811-012-9969-z.

    Article  Google Scholar 

  • Smida, D. B., Sahraoui, I., Grami, B., Mabrouk, H. H., & Hlaili, A. S. (2014). Population dynamics of potentially harmful algal blooms in Bizerte Lagoon, Tunisia. African Journal of Aquatic Science, 39, 177–188. doi:10.2989/16085914.2014.911718.

    Article  Google Scholar 

  • Tholkapiyan, M., Shanmugam, P., & Suresh, T. (2014). Monitoring of ocean surface algal blooms in coastal and oceanic waters around India. Environmental Monitoring and Assessment, 186, 4129–4137.

    Article  CAS  Google Scholar 

  • Trojanowska, A., & Izydorczyk, K. (2010). Phosphorus fractions transformation in sediments before and after cyanobacterial bloom: implications for reduction of eutrophication symptoms in dam reservoir. Water, Air, & Soil Pollution, 211, 287–298. doi:10.1007/s11270-009-0299-y.

    Article  CAS  Google Scholar 

  • Wang, J. (2003). Cytobiology (p. 306). Beijing: Science Press.

    Google Scholar 

  • Wang, H., Pang, Y., Ding, L., Liu, M., & Zhuang, H. (2008). Numerical simulations of the transparency of waterfront bodies. Tsinghua Science and Technology, 13, 720–729.

    Article  Google Scholar 

  • Wang, Z., Li, Z., & Li, D. (2012). A niche model to predict Microcystis bloom decline in Chaohu Lake, China. Chinese Journal of Oceanology and Limnology, 30, 587–594. doi:10.1007/s00343-012-1254-0.

    Article  CAS  Google Scholar 

  • Wang, Z., Yu, Z., Song, X., Cao, X., & Han, X. (2014a). Effects of modified clay on cysts of Scrippsiella trochoidea for harmful algal bloom control. Chinese Journal of Oceanology and Limnology, 4, 1–10. doi:10.1007/s00343-015-4008-y.

    Google Scholar 

  • Wang, H., Zhou, Y., Pang, Y., & Wang, X. M. (2014b). Fluctuation of cadmium load on a tide-influenced waterfront lake in the middle-lower reaches of the Yangtze River. Clean: Soil, Air, Water, 10, 1402–1408. doi:10.1002/clen.201300693.

    Google Scholar 

  • Wu, Z. L., Shen, H. F., Ondruschka, B., Zhang, Y. C., Wang, W. M., & Bremner, D. H. (2012). Removal of blue-green algae using the hybrid method of hydrodynamic cavitation and ozonation. Journal of Hazardous Materials, 235, 152–158.

    Article  Google Scholar 

  • Wu, T., Qin, B., Zhu, G., Luo, L., Ding, Y., & Bian, G. (2013). Dynamics of cyanobacterial bloom formation during short-term hydrodynamic fluctuation in a large shallow, eutrophic, and wind-exposed Lake Taihu, China. Environmental Science and Pollution Research, 20, 8546–8556. doi:10.1007/s11356-013-1812-9.

    Article  CAS  Google Scholar 

  • Wu, Z., He, H., Cai, Y., Zhang, L., & Chen, Y. (2014). Spatial distribution of chlorophyll a and its relationship with the environment during summer in Lake Poyang: a Yangtze-connected lake. Hydrobiologia, 732, 61–70. doi:10.1007/s10750-014-1844-2.

    Article  Google Scholar 

  • Xia, S., Wan, L., Li, A., Sang, M., & Zhang, C. (2013). Effects of nutrients and light intensity on the growth and biochemical composition of a marine microalga Odontella aurita. Chinese Journal of Oceanology and Limnology, 31, 1163–1173. doi:10.1007/s00343-013-2092-4.

    Article  CAS  Google Scholar 

  • Xian, Q., Chen, H., Zou, H., Yin, D., Gong, H., & Qu, L. (2005). Allelopathic effects of four submerged macrophytes on Microcystis aeruginosa. Journal of Lake Science, 17, 75–80.

    Article  Google Scholar 

  • Xu, L., Shen, J., Marinova, D., Guo, X., Sun, F., & Zhu, F. (2013). Changes of public environmental awareness in response to the Taihu blue-green algae bloom incident in China. Environment, Development and Sustainability, 15, 1281–1302. doi:10.1007/s10668-013-9440-6.

    Article  Google Scholar 

  • Yeh, T. Y., Ke, T. Y., & Lin, Y. L. (2011). Algal growth control within natural water purification systems: macrophyte light shading effects. Water, Air, & Soil Pollution, 214, 575–586. doi:10.1007/s11270-010-0447-4.

    Article  CAS  Google Scholar 

  • Zhai, Z., Wang, X., & Ding, M. (2000). Cytobiology (pp. 227–229). Beijing: Higher Education Press.

    Google Scholar 

  • Zhan, M., Wu, R., Lei, J.L., Li, L.J. & Liu, X.A.(2009). A numerical model of algal bloom based on the synchronization of complex networks theory. Acta Scientiae Circumstantiae, 10, 2224-2230.

  • Zhang, C., & Yang, C. (2006). Simulation of plant growth and mathematical modeling study. Acta Scientiarum Naturalium Universitatis NeiMongol, 37, 435–440.

    Google Scholar 

  • Zhang, Y., Qin, B., Chen, W., Yang, D., & Ji, J. (2003). Analysis on distribution and variation of beam attenuation coefficient of Taihu Lake’s water. Advances in Water Science, 14, 347–353.

    Google Scholar 

  • Zhang, Y., Qin, B., Chen, W., & Yang, D. (2004). Regression analysis of beam attenuation coefficient underwater in Lake Taihu. Oceanologia Et Limnologia Sinica, 35, 209–213.

    Google Scholar 

  • Zhang, W., Dong, Z., Zhang, L., & Yang, Z. (2010). Study on the photocatalytic degradation of microcystins by using UV/Fenton /TiO2. Journal of Anhui Agricultural Sciences, 38, 4775–4778.

    CAS  Google Scholar 

  • Zhao, D. H., Shen, H. W., Lai, J. S., & Tabios, G. Q. (1996). Approximate Riemann solvers in FVM for 2D hydraulic shock wave modeling. Journal of Hydraulic Engineering ASCE, 122, 692–702.

    Article  Google Scholar 

  • Zhao, D., Qi, C., Yu, W., Xu, B., & Pei, Z. (2000). Volume method and Riemann solver for depth-averaged two-dimensional flow-pollutants coupled model. Advances in Water Science, 11, 368–374.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51309082), the Major Science and Technology Program for Water Pollution Control and Treatment of China (No. 2012ZX07506-002 & No.2012ZX07101-001), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhizhang, Z., Zhao, Y. et al. Projection Pursuit-Based Microcystis Bloom Warning in a Riverside Lake. Water Air Soil Pollut 227, 102 (2016). https://doi.org/10.1007/s11270-016-2802-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2802-6

Keywords

Navigation