Skip to main content
Log in

Evaluation of VOC fluxes at the soil-air interface using different flux chambers and a quasi-analytical approach

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Dense nonaqueous-phase liquids (DNAPLs) spilled on the soil migrate vertically depending upon gravity and capillary forces through the unsaturated zone of the porous aquifer, forming a vapour plume. These volatile organic compounds (VOCs) can be transferred by advection-diffusion to the groundwater or to the atmosphere. Evaluating DNAPL vapour fluxes at the soil-air interface is one of the key challenges in the remediation of contaminated sites. This work discusses the results of a large-scale vapour plume experiment with a well-defined trichloroethylene (TCE) spill, including a sequential raising and lowering of the water table, where the TCE vapour fluxes at the soil surface were experimentally quantified in two ways: (i) directly, with measurements at the soil-air interface using different flux chambers at various operational modes under both transient and steady-state conditions of the vapour plume, and (ii) indirectly, using a quasi-analytical approach based on soil gas measurements. It was shown that upward displacement of the water-air front during the controlled raising of the water table (approximately 10 cm h−1) increased the TCE vapour flux measured at the soil surface by factors of 4 to 10. Under steady-state transport conditions, TCE vapour fluxes measured using five types of flux chambers and three operational modes were similar. The effects of the flux chamber geometry, the accumulation of TCE vapours in the chamber headspace or the air recirculation at a low flow rate on the measured TCE vapour fluxes were low. At steady-state transport conditions, TCE vapour fluxes measured with the flux chambers and estimated using the quasi-analytical approach were of the same order of magnitude. However, under transient conditions of the vapour plume, the TCE vapour flux predicted by the quasi-analytical approach greatly underestimated or overestimated the real TCE vapour flux at the soil-air interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altevogt, A. S., Rolston, D. E., & Venterea, R. T. (2003). Density and pressure effects on the transport of gas phase chemicals in unsaturated porous media. Water Resources Research, 39, 1061–1071.

    Article  Google Scholar 

  • Baehr, A. L., & Bruell, C. J. (1990). Application of the Stefan-Maxwell equations to determine limitations of Fick’s law when modeling organic vapor transport in sand columns. Water Resources Research, 26, 1155–1163.

    CAS  Google Scholar 

  • Bahr, D. E., Aldrich, T. E., Seidu, D., Brion, G. M., Tollerud, D. J., & Paducah Gaseous Diffusion Plant Project Team et al. (2011). Occupational exposure to trichloroethylene and cancer risk for workers at the Paducah Gaseous Diffusion Plant. International Journal of Occupational Medicine and Environmental Health, 24, 67–77.

  • Batterman, S. A., McQuown, B. C., Murthy, P. N., & McFarland, A. R. (1992). Design and evaluation of a long-term soil gas flux sampler. Environmental Science & Technology, 26, 709–714.

    Article  CAS  Google Scholar 

  • Bekku, Y., Koizumi, H., Nakadai, T., & Iwaki, H. (1995). Measurement of soil respiration using closed chamber method: an IRGA technique. Ecological Research, 10, 369–373.

    Article  Google Scholar 

  • Bohy, M., Dridi, L., Schäfer, G., & Razakarisoa, O. (2006). Transport of a mixture of chlorinated solvent vapors in the vadose zone of a sandy aquifer. Vadose Zone Journal, 5, 539–553.

    Article  CAS  Google Scholar 

  • Carpi, A., Fostier, A. H., Orta, O. R., dos Santos, J. C., & Gittings, M. (2014). Gaseous mercury emissions from soil following forest loss and land use changes: field experiments in the United States and Brazil. Atmospheric Environment, 96, 423–429.

    Article  CAS  Google Scholar 

  • Choi, J. W., Tillman, F. D., & Smith, J. A. (2002). Relative importance of gasphase diffusive and advective trichloroethylene fluxes in the unsaturated zone under natural conditions. Environmental Science & Technology, 36, 3157–3164.

    Article  CAS  Google Scholar 

  • Christiansen, J. R., Korhonen, J. F. J., Juszczak, R., Giebels, M., & Pihlatie, M. (2011). Assessing the effects of chamber placement, manual sampling and headspace mixing on CH4 fluxes in a laboratory experiment. Plant Soil, 343, 171–185.

    Article  CAS  Google Scholar 

  • Collier, S. M., Ruark, M. D., Oates, L. G., Jokela, W. E., & Dell, C. J. (2014). Measurement of greenhouse gas flux from agricultural soils using static chambers. Journal of Visualized Experiments, 90, e52110.

    Google Scholar 

  • Cotel, S. (2008). Etude des transferts sol/nappe/atmosphère/bâtiments ; Application aux sols pollués par des Composés Organiques Volatils. Thèse de doctorat de l’Université Joseph Fourier de Grenoble.

  • Cotel, S., Schäfer, G., Barthes, V., & Baussand, P. (2011). Effect of density-driven advection on trichloroethylene vapor diffusion in a porous medium. Vadose Zone Journal, 10, 565–581.

    Article  CAS  Google Scholar 

  • Davidson, E. A., Savage, K., Verchot, L. V., & Navarro, R. (2002). Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agricultural and Forest Meteorology, 113, 21–37.

    Article  Google Scholar 

  • Di Francesco, F., Ferrara, R., & Mazzolai, B. (1998). Two ways of using a chamber for mercury flux measurement—a simple mathematical approach. Science of the Total Environment, 213, 33–41.

  • Dridi, L. (2006). Transfert d’un mélange de solvants chlorés en aquifère poreux hétérogène: expérimentations sur site contrôlé et simulations numériques. Thèse de doctorat de l’Université Louis Pasteur de Strasbourg.

  • Dridi, L., & Schäfer, G. (2006). Quantification du flux de vapeurs de solvants chlorés depuis une source en aquifère poreux vers l’atmosphère: biais relatifs à la non uniformité de la teneur en eau et à la non stationnarité du transfert. Comptes Rendus Mécanique, 334, 611–620.

    Article  CAS  Google Scholar 

  • Dridi, L., Pollet, I., Razakarisoa, O., & Schäfer, G. (2009). Characterisation of a DNAPL source zone in a porous aquifer using the Partitioning Interwell Tracer Test and an inverse modelling approach. Journal of Contaminant Hydrology, 107, 22–44.

    Article  CAS  Google Scholar 

  • Baker, K., Berry, D., Christmann, C., Dellechaie, F., Diaz, T., Gallagher, D., Klein, K., Mingay, M., Parsons, B., Rainey, L., Schum, M., Sorensen, M., Sotelo, J., Stacy, A., & Zanoria, F. (2011). Guidance for the evaluation and mitigation of subsurface vapor intrusion to indoor Air (vapor intrusion guidance). California: Department of Toxic Substances Control, California Environmental Protection Agency.

    Google Scholar 

  • Eckley, C. S., Gustin, M., Lin, C.-J., Li, X., & Miller, M. B. (2010). The influence of dynamic chamber design and operating parameters on calculated surface-to-air mercury fluxes. Atmospheric Environment, 44, 194–203.

    Article  CAS  Google Scholar 

  • Eklund, B., Balfour, W., & Schmidt, C. (1985). Measurement of fugitive volatile organic emission rates. Environmental Progress, 4(3), 199–202.

    Article  CAS  Google Scholar 

  • Gallego, E., Perales, J. F., Roca, F. J., & Guardino, X. (2014). Surface emission determination of volatile organic compounds (VOC) from a closed industrial waste landfill using a self-designed static flux chamber. Science of the Total Environment, 470–471, 587–599.

    Article  Google Scholar 

  • Gao, F., & Yates, S. R. (1998). Laboratory study of closed and dynamic flux chambers: experimental results and implications for field application. Journal of Geophysical Research, 103, 26115–26125.

    Article  Google Scholar 

  • Grathwohl, P. (1998). Diffusion in natural porous media: contaminant transport, sorption/desorption and dissolution kinetics. Boston, MA: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Happell, J. D., Mendoza, Y., & Goodwin, K. (2014). A reassessment of the soil sink for atmospheric carbon tetrachloride based upon static flux chamber measurements. Journal of Atmospheric Chemistry, 71, 113–123.

    Article  CAS  Google Scholar 

  • Hudson, N., & Ayoko, G. A. (2008). Odour sampling 2: comparison of physical and aerodynamic characteristics of sampling devices: a review. Bioresource Technology, 99, 3993–4007.

    Article  CAS  Google Scholar 

  • Jellali, S., Benremita, H., Muntzer, P., Razakarisoa, O., & Schäfer, G. (2003). A large-scale experiment on mass transfer of trichloroethylene from the unsaturated zone of a sandy aquifer to its interfaces. Journal of Contaminant Hydrology, 60, 31–53.

    Article  CAS  Google Scholar 

  • Kanemasu, E. T., Powers, W. L., & Sij, J. W. (1974). Field chamber measurements of CO2 flux from soil surface. Soil Science, 118, 233–237.

    Article  CAS  Google Scholar 

  • Lenhard, R. J., Oostrom, M., Simmons, C. S., & White, M. D. (1995). Investigation of density-dependent gas advection of trichloroethylene: experiment and a model validation exercise. Journal of Contaminant Hydrology, 19, 47–67.

    Article  CAS  Google Scholar 

  • Lerner, D. N., Bourg, A. C. M., Gosk, E., Biscop, P. K., Mouvet, C., Degranges, P., Jakobsen, R., Burston, M. W., & Barberis, D. (1991). Sources et mouvements des solvants chlorés dans les eaux souterraines de Coventry (Grande Bretagne). Hydrogéologie, 4, 275–282.

    Google Scholar 

  • Lindberg, S. E., Zhang, H., Vette, A. F., Gustin, M. S., Barnett, M. O., & Kuiken, T. (2002). Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils. Part 2—effect of flushing flow rate and verification of a two-resistance exchange interface simulation model. Atmospheric Environment, 36, 847–859.

    Article  CAS  Google Scholar 

  • Liu, F., Cheng, H., Yang, K., Zhao, C., Liu, Y., Peng, M., & Li, K. (2014). Characteristics and influencing factors of mercury exchange flux between soil and air in Guangzhou City. Journal of Geochemical Exploration, 139, 115–121.

    Article  CAS  Google Scholar 

  • Lund, C. P., Riley, W. J., Pierce, L. L., & Field, C. B. (1999). The effects of chamber pressurization on soil-surface CO2 flux and the implications for NEE measurements under elevated CO2. Global Change Biology, 5, 269–281.

    Article  Google Scholar 

  • Lusczynski, N. J. (1960). Head and flow of ground water of variable density. Journal of Geophysical Research, 66, 4247–4256.

    Article  Google Scholar 

  • Massmann, J., & Farrier, D. F. (1992). Effects of atmospheric pressures on gas transport in the vadose zone. Water Resources Research, 28(3), 777–791.

    Article  Google Scholar 

  • Maier, M., & Schack-Kirchner, H. (2014). Using the gradient method to determine soil gas flux: a review. Agricultural and Forest Meteorology, 192–193, 78–95.

    Article  Google Scholar 

  • Ma, M., Wang, D., Sun, R., Shen, Y., & Huang, L. (2013). Gaseous mercury emissions from subtropical forested and open field soils in a national nature reserve, southwest China. Atmospheric Environment, 64, 116–123.

    Article  CAS  Google Scholar 

  • Matthias, A. D., Blackmer, A. M., & Bremner, J. M. (1980). A simple chamber technique for field measurement of emissions of nitrous oxide from soils. Journal of Environmental Quality, 9, 251–256.

    Article  CAS  Google Scholar 

  • Marzougui, S., Schäfer, G., & Dridi, L. (2012). Prediction of vertical DNAPL vapour fluxes in soils using quasi-analytical approaches: bias related to density-driven and pressure-gradient-induced advection. Water Air Soil Pollution, 223, 5817–5840.

    Article  CAS  Google Scholar 

  • Marzougui-Jaafar, S. (2013). Transfert d’un composé organo-chloré depuis une zone source localisée en zone non saturée d’un aquifère poreux vers l’interface sol-air : expérimentations et modélisations associées. Thèse de doctorat de l’Université de Strasbourg

  • Mendoza, C. A., & Frind, E. O. (1990). Advective-dispersion transport of dense organic vapors in the unsaturated zone, 1-Model development and 2-Sensibility analysis. Water Resources Research, 26, 379–398.

    CAS  Google Scholar 

  • Millington, R. J., & Quirk, J. M. (1961). Permeability of porous solids. Transactions of the Faraday Society, 57, 1200–1207.

    Article  CAS  Google Scholar 

  • Miola, E. C. C., Aita, C., Rochette, P., Chantigny, M. H., Angers, D. A., Bertrand, N., & Gasser, M.-O. (2015). Static Chamber Measurements of Ammonia Volatilization from Manured Soils: Impact of Deployment Duration and Manure Characteristics. Soil Science Society of America Journal, 79, 305–313.

    Article  CAS  Google Scholar 

  • Morel‐Seytoux, H. J., Meyer, P. D., Nachabe, M., Touma, J., van Genuchten, M. T., & Lenhard, R. J. (1996). Parameter equivalence for the Brooks‐Corey and van Genuchten soil characteristics: Preserving the effective capillary drive. Water Resources Research, 32, 2031–2041.

    Google Scholar 

  • Nay, S. M., Mattson, K. G., & Bormann, B. T. (1994). Biases of chamber methods for measuring soil CO2 efflux demonstrated with a laboratory apparatus. Ecology, 75, 2460–2463.

    Article  Google Scholar 

  • Nômmik, H. (1973). The effect of pellet size on the ammonia loss from urea applied to forest soil. Plant Soil, 39, 309–318.

    Article  Google Scholar 

  • Pankow, J. F., & Cherry, J. A. (1996). DNAPLs in groundwater: History, behavior and remediation. Portland, Oregon: Waterloo Press.

    Google Scholar 

  • Parker, D., Ham, J., Woodbury, B., Cai, L., Spiehs, M., Rhoades, M., Trabue, S., Casey, K., Todd, R., & Cole, A. (2013a). Standardization of flux chamber and wind tunnel flux measurements for quantifying volatile organic compound and ammonia emissions from area sources at animal feeding operations. Atmospheric Environment, 66, 72–83.

    Article  CAS  Google Scholar 

  • Parker, D. B., Gilley, J., Woodbury, B., Kim, K.-H., Galvin, G., Bartelt-Hunt, S. L., Li, X., & Snow, D. D. (2013b). Odorous VOC emission following land application of swine manure slurry. Atmospheric Environment, 66, 91–100.

    Article  CAS  Google Scholar 

  • Pasteris, G., Werner, D., Kaufmann, K., & Hohener, P. (2002). Vapor phase transport and biodegradation of volatile fuel compounds in the unsaturated zone: A large scale lysimeter experiment. Environmental Science & Technology, 36, 30–39.

    Article  CAS  Google Scholar 

  • Pihlatie, M. K., Christiansen, J. R., Aaltonen, H., Korhonen, J. F. J., Nordbo, A., Rasilo, T., Benanti, G., Giebels, M., Helmy, M., Sheehy, J., Jones, S., Juszczak, R., Klefoth, R., Lobo-do-Vale, R., Rosa, A. P., Schreiber, P., Serça, D., Vicca, S., Wolf, B., & Pumpanen, J. (2013). Comparison of static chambers to measure CH4 emissions from soils. Agricultural and Forest Meteorology, 171–172, 124–136.

    Article  Google Scholar 

  • Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinisto, S., Lohila, A., Larmola, T., Morero, M., Pihlatie, M., Janssens, I., Yuste, J. C., Grunzweig, J. M., Reth, S., Subke, J. A., Savage, K., Kutsch, W., Ostreng, G., Ziegler, W., Anthoni, P., Lindroth, A., & Hari, P. (2004). Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology, 123, 159–176.

    Article  Google Scholar 

  • Reid, C. R., Prausnitz, J. M., & Sherwood, T. K. (1977). The properties of gases and liquids (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Rochette, P. (2011). Towards a standard non-steady-state chamber methodology for measuring soil N2O emissions. Animal Feed Science and Technology, 166–167, 141–146.

    Article  Google Scholar 

  • Rusyn, I., Chiu, W. A., Lash, L. H., Kromhout, H., Hansen, J., & Guyton, K. Z. (2014). Trichloroethylene: mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard. Pharmacology & Therapeutics, 141, 55–68.

    Article  CAS  Google Scholar 

  • Sihota, N. J., Mayer, K. U., Toso, M. A., & Atwater, J. F. (2013). Methane emissions and contaminant degradation rates at sites affected by accidental releases of denatured fuel-grade ethanol. Journal of Contaminant Hydrology, 151, 1–15.

    Article  CAS  Google Scholar 

  • Sleep, B. E., & Sykes, J. F. (1989). Modeling the transport of volatile organics in variably saturated media. Water Resources Research, 25, 81–92.

    Article  CAS  Google Scholar 

  • Smith, J. A., Tisdale, A. K., & Cho, H. J. (1996). Quantification of Natural Vapor Fluxes of Trichloroethene in the unsaturated zone at Picatinny Arsenal, New Jersey. Environmental Science & Technology, 30, 2243–2250.

    Article  CAS  Google Scholar 

  • Thomson, N. R., Sykes, J. F., & Vliet, D. V. (1997). A numerical investigation into factors affecting gas and aqueous phase plumes in the subsurface. Journal of Contaminant Hydrology, 28, 39–70.

    Article  CAS  Google Scholar 

  • Tillman, F.D. (2003). Design and testing of a chamber device to measure total flux of volatile organic compounds from the unsaturated zone under natural conditions, Ph.D. dissertation, University of Virginia.

  • Tillman, F. D., Choi, J. W., & Smith, J. A. (2003). A comparison of direct measurement and model simulation of total flux of volatile organic compounds from the subsurface to the atmosphere under natural field conditions. Water Resources Research, 39, 1284–1295.

    Article  Google Scholar 

  • Traverse, S., Schäfer, G., Chastanet, J., Hulot, C., Perronnet, K., Collignan, B., Cotel, S., Marcoux, M., Côme, J.M., Correa, J., Gay, G., Quintard, M., & Pepin, L. (2013). Projet FLUXOBAT. Evaluation des transferts de COV du sol vers l’air intérieur et extérieur. Guide méthodologique.

  • Tuli, A., Hopmans, J. W., Rolston, D. E., & Moldrup, P. (2005). Comparison of air and water permeability between disturbed and undisturbed soils. Soil Science Society of America Journal, 69, 1361–1371.

    Article  CAS  Google Scholar 

  • Wallschlager, D., Turner, R. R., London, J., Ebinghaus, R., Kock, H. H., Sommar, J., & Xiao, Z. (1999). Factors affecting the measurement of mercury emissions from soils with flux chambers. Journal of Geophysical Research, 104, 21859–21871.

    Article  CAS  Google Scholar 

  • Wang, J. M., Murphy, J. G., Geddes, J. A., Winsborough, C. L., Basiliko, N., & Thomas, S. C. (2013). Methane fluxes measured by eddy covariance and static chamber techniques at a temperate forest in central Ontario, Canada. Biogeosciences, 10, 4371–4382.

    Article  Google Scholar 

  • Yu, L., Wang, H., Wang, G., Song, W., Huang, Y., Li, S. G., Liang, N., Tang, Y., & He, J. S. (2013). A comparison of methane emission measurements using eddy covariance and manual and automated chamber-based techniques in Tibetan Plateau alpine wetland. Environmental Pollution, 181, 81–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the French Agence Nationale de la Recherche (ANR) by way of project ANR-FLUXOBAT (PRECODD 2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Schäfer.

Appendices

Appendices

Appendix A Uncertainties in the experimental TCE mass fluxes measured without TCE vapour accumulation in the flux chamber (see Eq. (2))

Uncertainties in the TCE mass fluxes were determined using a total derivative expansion for correlated variables of Fsoil/atm:

$$ \frac{\varDelta {F}_{soil/ atm}}{F_{soil/ atm}}=\frac{\varDelta {m}_{ads}+{V}_{ch}\varDelta {C}_{ch}+{C}_{ch}\varDelta {V}_{ch}}{m_{ads}+{C}_{ch}{V}_{ch}}+\frac{\varDelta {A}_{ch}}{A_{ch}}+\frac{\varDelta \left(\varDelta t\right)}{\varDelta t} $$
(9)

Here, Δm ads and ΔC ch are the errors in the fixed TCE mass and residual vapour concentration in the chamber. In addition, ΔV ch , ΔA ch and Δ(Δt) are the net volume, measured area and time measuring interval errors, respectively. By neglecting errors in time recording and assuming relative uncertainties of 4 % in the sorbed TCE mass (gas chromatography analysis), 2.5 % in the TCE vapour concentration (INNOVA measurements) or 5 % (photo-ionisation detectors measurements), 4 % in the chamber section and chamber volume (CF2, CF3, CF4 and CF5) and 25 % in the net volume of very small flux chamber CF1, relative uncertainty in the pollutant vapour flux measured without TCE vapour accumulation in the flux chamber can be determined.

For Sect. 3.2.1, relative uncertainties in the flux were within the range of 8.8 and 10.5 %.

For Sect. 3.3, relative uncertainties in the flux were within the range of 9.2 and 23.1 %.

Appendix B Uncertainties in the calculated TCE mass fluxes using the quasi-analytical approach (see Eq. (3))

Uncertainties in the diffusive portion of the predicted TCE vapour fluxes were determined using the equation

$$ \frac{\varDelta {F}_{diff,z}}{F_{diff,z}}=\frac{10}{3}\frac{\varDelta {S}_a}{S_a}+\frac{4}{3}\frac{\varDelta \varepsilon }{\varepsilon }+\frac{\varDelta \left(d{C}_a/dz\right)}{d{C}_a/dz} $$
(10)

which follows from Eq. (3) using a total derivative expansion for correlated variables. Considering uncertainties of 3.4 % in the gas saturation measurements (ΔS a /S a ), 2 % in the sand porosity (Δε/ε) and 2.5 % in the vapour concentration gradients (Δ(dC a /dz)/(dC a /dz)) based on the INNOVA measurements and assuming no errors in the free air diffusion coefficient, a total uncertainty in the predicted diffusive vapour flux of approximately 16.5 % was obtained.

In a similar way, assuming no error in the estimation of the density of the uncontaminated soil air and in the dynamic gas viscosity and neglecting error in the relative gas pressure (manufacturer data yield a relative uncertainty of 0.1 %), uncertainties in the advective portion of the estimated TCE vapour fluxes were determined using the equation

$$ \frac{\varDelta {F}_{conv,z}}{F_{conv,z}}=\frac{\varDelta {C}_a}{C_a}+\frac{\varDelta {k}_{ra}}{k_{ra}}+\frac{\varDelta {k}^{\ast }}{k^{\ast }}+\frac{\varDelta {\rho}_a}{\rho_a}\kern0.5em \mathrm{with}\kern0.5em \frac{\varDelta {k}_{ra}}{k_{ra}}=\left({a}_a+\frac{2}{m}\right)\frac{\varDelta {S}_w}{S_w}\kern0.5em \mathrm{and}\kern0.5em \frac{\varDelta {\rho}_a}{\rho_a}=\frac{\varDelta {C}_a}{C_a} $$
(11)

Considering uncertainties of 2.5 % in the vapour concentrations (ΔCa/Ca) based on the INNOVA measurements, 3.4 % in the water saturation measurements (ΔS w /S w ) and 2 % in the sand permeability (Δk*/k*), a total uncertainty of 16.1 % in the predicted advective vapour flux was obtained.

Appendix C Uncertainties in the experimental TCE mass fluxes measured with TCE vapour accumulation in the flux chamber (see Eq. (1))

Uncertainties in the TCE mass fluxes were determined using a total derivative expansion for correlated variables of Fsoil/atm:

$$ \frac{\varDelta {F}_{soil/ atm}}{F_{soil/ atm}}=\frac{\varDelta \left(d{C}_{ch}/dt\right)}{d{C}_{ch}/dt}+\frac{\varDelta {V}_{ch}}{V_{ch}}+\frac{\varDelta {A}_{ch}}{A_{ch}} $$
(12)

Considering uncertainties of 2.5 % in the temporal TCE concentration variation (Δ(dC ch /dt)/(dC ch /dt)) (INNOVA measurements) or 5 % (photo-ionisation detectors measurements), uncertainties in the chamber section of 4 % and in the chamber volume of 4 % (CF2, CF3, CF4 and CF5) and uncertainties of 25 % in the net volume of very small flux chamber CF1, the total uncertainty in the measured fluxes with TCE vapour accumulation in the flux chamber ranged between 10.5 and 34 %.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cotel, S., Schäfer, G., Traverse, S. et al. Evaluation of VOC fluxes at the soil-air interface using different flux chambers and a quasi-analytical approach. Water Air Soil Pollut 226, 356 (2015). https://doi.org/10.1007/s11270-015-2596-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2596-y

Keywords

Navigation