Skip to main content
Log in

Morphological Differences in Response to Physiological Integration and Spatial Heterogeneity of Root Zone Glyphosate Exposure in Connected Ramets of Ludwigia peploides (Creeping Water Primrose)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The effects of applying glyphosate to the root zone of one of a pair of connected ramets were investigated. In the low root density (LRD) treatment, daughter ramet roots were exposed to 100 mL of 10 mg L−1 glyphosate, while in the high root density (HRD) treatment, mother ramet roots were exposed to the same glyphosate solution. These treatments were compared to unexposed controls. The morphologies (leaf and shoot numbers) of control and HRD treatments were identical. In these treatments, daughter ramets had greater numbers of leaves and shoots than mother ramets. The morphology of the LRD treatment was opposite: mother ramets had more leaves and shoots than daughter ramets. Growth parameters were unaffected by glyphosate exposure except for relative growth rate, which was significantly greater for the HRD treatment. This study provides insights about the responses of clonal plants to physiological integration and spatially heterogeneous environmental stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alpert, P. (1996). Nutrient sharing in natural clonal fragments of Fragaria chiloensis. Journal of Ecology, 84, 395–406.

    Article  Google Scholar 

  • Alpert, P., & Mooney, H. A. (1986). Resource sharing among ramets in the clonal herb, Fragaria chiloensis. Oecologia, 70, 227–233.

    Article  Google Scholar 

  • Bayer, D. E., & Rejmánková, E. (1990). Removal of herbicide residua and nitrates from agricultural waters by aquatic plants (WRC Project W-727). Riverside: Report of Water Resources Center, University of California. 32 pp.

    Google Scholar 

  • Belz, R. G., & Duke, S. O. (2014). Herbicides and plant hormesis. Pest Management Science, 70, 698–707.

    Article  CAS  Google Scholar 

  • Belz, R. G., Cedergreen, N., & Duke, S. O. (2011). Herbicide hormesis—can it be useful in crop production? Weed Research, 51, 321–332.

    Article  Google Scholar 

  • Borggaard, O. K., & Gimsing, A. L. (2008). Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Management Science, 64, 441–456.

    Article  CAS  Google Scholar 

  • Bouldin, J. L., Farris, J. L., Moore, M. T., Smith, S., Jr., & Cooper, C. M. (2006). Hydroponic uptake of atrazine and lambda-cyhalothrin in Juncus effusus and Ludwigia peploides. Chemosphere, 65, 1049–1057.

    Article  CAS  Google Scholar 

  • Cedergreen, N. (2008). Is the growth stimulation by low doses of glyphosate sustained over time? Environmental Pollution, 156, 1099–1104.

    Article  CAS  Google Scholar 

  • Clua, A., Conti, M., & Beltrano, J. (2012). The effects of glyphosate on the growth of Birdsfoot Trefoil (Lotus corniculatus) and its interaction with different phosphorus contents in soil. Journal of Agricultural Science, 4, 208–218.

    Article  Google Scholar 

  • D’hertefeldt, T., & van der Putten, W. (1998). Physiological integration of the clonal plant Carex arenaria and its response to soil-borne pathogens. Oikos, 81, 229–237.

    Article  Google Scholar 

  • Dandelot, S., Verlaque, R., Dutarte, A., & Cazaubon, A. (2005). Ecological, dynamic and taxonomic problems due to Ludwigia (Onagraceae) in France. Hydrobiologia, 551, 131–136.

    Article  Google Scholar 

  • de Carvalho, L. B., Alves, P. L. C. A., & Duke, S. O. (2013). Hormesis with glyphosate depends on coffee growth stage. Annals of the Brazilian Academy of Sciences, 85, 813–821.

    Article  Google Scholar 

  • de Kroon, H., & Hutchings, M. J. (1995). Morphological plasticity in clonal plants: the foraging concept reconsidered. Journal of Ecology, 83, 143–152.

    Article  Google Scholar 

  • de Kroon, H., & Knops, J. (1990). Habitat exploration through morphological plasticity in two chalk grassland perennials. Oikos, 59, 39–49.

    Article  Google Scholar 

  • de Kroon, H., & van Groenendael, J. (Eds.). (1997). The ecology and evolution of clonal plants. Leiden: Backhuys Publishers. 453 p.

    Google Scholar 

  • Dewey, S.A. (1981). Manipulation of assimilate transport patterns as a method of studying glyphosate translocation in tall morning glory [Ipomoea purpurea (L.) Roth] [dissertation]. Oregon State University. 127 p.

  • Duke, S. O. (1988). Glyphosate. In P. C. Kearney & D. D. Kaufman (Eds.), Herbicides: chemistry, degradation, and mode of action (pp. 1–70). New York: Marcel Dekker.

    Google Scholar 

  • Edwards, W. M., Triplett, G. B., & Kramer, R. M. (1980). A watershed study of glyphosate transport in runoff. Journal of Environmental Quality, 9, 661–665.

    Article  CAS  Google Scholar 

  • Ellmore, G. S. (1981). Root dimorphism in Ludwigia peploides (Onagraceae): structure and gas content of mature roots. American Journal of Botany, 68, 557–568.

    Article  Google Scholar 

  • Evans, J. P., & Cain, M. L. (1995). A spatially explicit test of foraging behavior in a clonal plant. Ecology, 76, 1147–1155.

    Article  Google Scholar 

  • Evans, J. P., & Whitney, S. (1992). Clonal integration across a salt gradient by a nonhalophyte, Hydrocotyle bonariensis (Apiaceae). American Journal of Botany, 79, 1344–1347.

    Article  Google Scholar 

  • Frantzen, J. (1994). The role of clonal growth in the pathosystem Cirsium arvensePuccinia punctiformis. Canadian Journal of Botany, 72, 832–836.

    Article  Google Scholar 

  • Geiger, D. R., Shieh, W. J., & Fuchs, M. A. (1999). Causes of self-limited translocation of glyphosate in Beta vulgaris plants. Pesticide Biochemistry and Physiology, 64, 124–133.

    Article  CAS  Google Scholar 

  • Gérard, J., Brion, N., & Triest, L. (2014). Effect of water column phosphorus reduction on competitive outcome and traits of Ludwigia grandiflora and L. peploides, invasive species in Europe. Aquatic Invasions, 9, 157–166.

    Article  Google Scholar 

  • Giesy, J. P., Dobson, S., & Solomon, K. R. (2000). Ecotoxicological risk assessment for Roundup® herbicide. Reviews of Environmental Contamination and Toxicology, 167, 35–120.

    CAS  Google Scholar 

  • Guo, W., & Hu, Z. H. (2012). Effects of stolon severing on the expansion of Alternanthera philoxeroides from terrestrial to contaminated aquatic habitats. Plant Species Biology, 27, 46–52.

    Article  Google Scholar 

  • Hester, M. W., McKee, K. L., Burdick, D. M., Koch, M. S., Flynn, K. M., Patterson, S., & Mendelssohn, I. A. (1994). Clonal integration in Spartina patens across a nitrogen and salinity gradient. Canadian Journal of Botany, 72, 767–770.

    Article  Google Scholar 

  • Hussner, A. (2010). Growth response and root system development of the invasive Ludwigia grandiflora and Ludwigia peploides to nutrient availability and water level. Fundamental and Applied Limnology Archiv für Hydrobiologie, 177, 189–196.

    Article  Google Scholar 

  • Jónsdóttir, I. S., & Watson, M. A. (1997). Extensive physiological integration: an adaptive trait in resource-poor environments? In H. De Kroon & J. van Groenendael (Eds.), The ecology and evolution of clonal plants (pp. 109–136). Leiden: Backhuys Publishers.

    Google Scholar 

  • Kirby, K. J. (1980). Experiments on vegetative reproduction in bramble (Rubus vestitus). Journal of Ecology, 68, 513–520.

    Article  Google Scholar 

  • Kui, L., Li, F., Moore, G., & West, J. (2013). Can the riparian invader, Arundo donax, benefit from clonal integration? Weed Research, 53, 370–377.

    Article  Google Scholar 

  • Li, Q., Liu, X., Yue, M., Zhang, X. F., & Zhang, R. C. (2011). Effects of physiological integration on photosynthetic efficiency of Trifolium repens in response to heterogeneous UV-B radiation. Photosynthetica, 49, 539–545.

    Article  CAS  Google Scholar 

  • Liu, F. H., Liu, J., Yu, F. H., & Dong, M. (2007). Water integration patterns in two rhizomatous dune perennials of different clonal fragment size. Flora, 202, 106–110.

    Article  Google Scholar 

  • Outridge, P. M., & Hutchinson, T. C. (1990). Effects of cadmium on integration and resource allocation in the clonal fern Salvinia molesta. Oecologia, 84, 215–223.

    Article  Google Scholar 

  • Peltzer, D. A. (2002). Does clonal integration improve competitive ability? A test using aspen (Populus tremuloides [Salicaceae]) invasion into prairie. American Journal of Botany, 89, 494–499.

    Article  Google Scholar 

  • Pennings, S. C., & Callaway, R. M. (2000). The advantages of clonal integration under different ecological conditions: a community-wide test. Ecology, 81, 709–716.

    Article  Google Scholar 

  • Poor, A., Hershock, C., Rosella, K., & Goldberg, D. E. (2005). Do physiological integration and soil heterogeneity influence clonal growth and foraging in Schoenoplectus pungens? Plant Ecology, 181, 45–56.

    Article  Google Scholar 

  • Radford, P. J. (1967). Growth analysis formulae—their use and abuse. Crop Science, 7, 171–175.

    Article  Google Scholar 

  • Rejmánková, E. (1992). Ecology of creeping macrophytes with special reference to Ludwigia peploides (H.B.K.) Raven. Aquatic Botany, 43, 283–299.

    Article  Google Scholar 

  • Roiloa, S. R., & Retuerto, R. (2006). Development, photosynthetic activity and habitat selection of the clonal plant Fragaria vesca growing in copper-polluted soil. Functional Plant Biology, 33, 961–971.

    Article  CAS  Google Scholar 

  • Roiloa, S. R., Antelo, B., & Retuerto, R. (2014). Physiological integration modifies δ15N in the clonal plant Fragaria vesca, suggesting preferential transport of nitrogen to water-stressed offspring. Annals of Botany, 144, 399–411.

    Article  Google Scholar 

  • Salzman, A. G., & Parker, M. A. (1985). Neighbors ameliorate local salinity stress for a rhizomatous plant in a heterogeneous environment. Oecologia, 65, 273–277.

    Article  Google Scholar 

  • Saunders, L. E., & Pezeshki, R. (2014). Sublethal effects of environmentally relevant runoff concentrations of glyphosate in the root-zone on Ludwigia peploides (creeping water primrose) and Polygonum hemitomon (smartweed). Weed Biology and Management, 14, 242–250.

    Article  CAS  Google Scholar 

  • Savini, G., Giorgio, V., Scarano, E., & Neri, D. (2008). Strawberry plant relationship through the stolon. Physiologia Plantarum, 134, 421–429.

    Article  CAS  Google Scholar 

  • Stuefer, J. F., & Hutchings, M. J. (1994). Environmental heterogeneity and clonal growth: a study of the capacity for reciprocal translocation in Glechoma hederacea L. Oecologia, 100, 302–308.

    Article  Google Scholar 

  • Stuefer, J. F., Gómez, S., & van Mӧlken, T. (2004). Clonal integration beyond resource sharing: implications for defense signaling and disease transmission in clonal plant networks. Evolutionary Ecology, 18, 647–667.

    Article  Google Scholar 

  • USEPA Technical Overview of Ecological Risk Assessment. (2012). United States Environmental Protection Agency. http://www.epa.gov/oppefed1/ecorisk_ders/toera_analysis_exp.htm. Accessed 11 Oct 2014.

  • Velini, E. D., Alves, E., Godoy, M. C., Meschede, D. K., Souza, R. T., & Duke, S. O. (2008). Glyphosate applied at low doses can stimulate plant growth. Pest Management Science, 64, 489–496.

    Article  CAS  Google Scholar 

  • Wagner, R., Kogan, M., & Parada, A. M. (2003). Phytotoxic activity of root absorbed glyphosate in corn seedlings (Zea mays L.). Weed Biology and Management, 3, 228–232.

    Article  CAS  Google Scholar 

  • Yu, F., Dong, M., & Krüsi, B. (2004). Clonal integration helps Psammochloa villosa survive sand burial in an inland dune. New Phytologist, 162, 697–704.

    Article  Google Scholar 

  • Zhang, Y. C., Zhang, Q. Y., Yirdaw, E., Luo, P., & Wu, N. (2008). Clonal integration of Fragaria orientalis driven by contrasting water availability between adjacent patches. Botanical Studies, 49, 373–383.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to The University of Memphis Department of Biological Sciences for providing space and support to carry out this study. The assistance of Dr. Melissa Koontz and Dr. Samuel Pierce is greatly appreciated.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyndsay E. Saunders.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saunders, L.E., Pezeshki, R. Morphological Differences in Response to Physiological Integration and Spatial Heterogeneity of Root Zone Glyphosate Exposure in Connected Ramets of Ludwigia peploides (Creeping Water Primrose). Water Air Soil Pollut 226, 171 (2015). https://doi.org/10.1007/s11270-015-2435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2435-1

Keywords

Navigation