Skip to main content
Log in

Distribution of Mercury in Shrimp Ponds and Volatilization of Hg by Isolated Resistant Purple Nonsulfur Bacteria

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The aims of this study were to investigate the presence of mercury (Hg) contamination in shrimp ponds in the south of Thailand and to isolate Hg-resistant purple nonsulfur bacteria (PNSB). Contamination by total mercury (HgT) in water and sediment samples ranged from <0.0002 to 0.037 μg/L and from 30.73 to 398.84 μg/kg dry weight. In all water and sediment samples, the concentration of HgT was less than the Thai, Hong Kong, and Canadian standard guidelines. Of the Hg-resistant PNSB, six strains detoxified Hg2+ by volatilization to Hg0 using their mercuric reductase enzyme. The ability of PNSB to resist Hg2+ in aerobic dark conditions was better than in microaerobic light, and this corresponded with their Hg reductase activities (dark condition 15.75, 12.62, and 12.16 U/mg protein for strains SSW15-1, SRW1-5, and SSS2-1, respectively). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were the same under both incubating conditions at 2.40 mg/L for SRW1-5 and 1.60 mg/L for SSW15-1. However, both values under light condition of SSS2-1 were 3.20 mg/L while under dark-condition MIC and MBC values were 3.20 and 4.00 mg/L. The half maximal inhibitory concentration (IC50) values of Hg2+ on strains SSS2-1, SRW1-5, and SSW15-1 under dark and light conditions were 2.16, 1.23, and 0.90; and 1.66, 1.11, and 0.80 mg/L, respectively. They were identified using 16S ribosomal RNA (rRNA) genes establishing that SSS2-1 and SSW15-1 were Afifella marina, while SRW1-5 was Rhodovulum sulfidophilum. These strains can potentially be used to treat Hg-contaminated shrimp ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baeyens, W., Leermakers, M., Papina, T., Saprykin, A., Brion, N., Noyen, J., De Gieter, M., & Goeyens, L. (2003). Bioconcentration and biomagnification of mercury and methylmercury in North Sea and Scheldt Estuary Fish. Archives of Environmental Contamination and Toxicology, 45, 498–508.

    Article  CAS  Google Scholar 

  • Bafana, A., Krishnamurthi, K., Patil, M., & Chakrabarti, T. (2010). Heavy metal resistance in Arthrobacter ramosus strain G2 isolated from mercuric salt-contaminated soil. Journal of Hazardous Materials, 177, 481–486.

    Article  CAS  Google Scholar 

  • Bai, H. J., Zhang, Z. M., Yang, G. E., & Li, B. Z. (2008). Bioremediation of cadmium by growing Rhodobacter sphaeroides: kinetic characteristic and mechanism studies. Bioresource Technology, 99(16), 7716–7722.

    Article  CAS  Google Scholar 

  • Barkay, T., Miller, S. M., & Summers, A. O. (2003). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews, 27, 355–384.

    Article  CAS  Google Scholar 

  • Barkay, T., Kritee, K., Boyd, E., & Geesey, G. (2010). A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase. Environmental Microbiology, 12, 2904–2917.

    Article  CAS  Google Scholar 

  • Boden, R., & Murrell, J. C. (2011). Response to mercury (II) ions in Methylococcus capsulatus (Bath). FEMS Microbiology Letters, 324, 106–110.

    Article  CAS  Google Scholar 

  • Brambilla, G., Abete, M. C., Binato, G., Chiaravalle, E., Cossu, M., Dellatte, E., Miniero, R., Orletti, R., Piras, P., Roncarati, A., Ubaldi, A., & Chessa, G. (2013). Mercury occurrence in Italian seafood from the Mediterranean Sea and possible intake scenarios of the Italian coastal population. Regulatory Toxicology and Pharmacology, 65, 269–277.

    Article  CAS  Google Scholar 

  • Carrasco, L., Bayona, J. M., & Diez, S. (2011). Mercury in aquatic organisms of the Ebro River Basin. In D. Barcelo & M. Petrovic (Eds.), The handbook of environmental chemistry (Vol. 13, pp. 239–258). Berlin: Springer Verlag.

    Google Scholar 

  • Cheevaporn, V., & Menasveta, P. (2003). Water pollution and habitat degradation in the Gulf of Thailand. Marine Pollution Bulletin, 47, 43–51.

    Article  CAS  Google Scholar 

  • De, J., & Ramaiah, N. (2007). Characterization of marine bacteria highly resistant to mercury exhibiting multiple resistances to toxic chemicals. Ecological Indicators, 7, 511–520.

    Article  CAS  Google Scholar 

  • Department of Fisheries in Thailand. (2013). Mitigation measures for management and control of EMS/AHPNS risk, strengthening of credibility for Thai shrimp industry. http://www.fisheries.go.th/ems/index.php/2013-05-10-08-01-01. Accessed 9 December 2013.

  • Domagalski, F. (2001). Mercury and methylmercury in water and sediment of the Sacramento River Basin, California. Applied Geochemistry, 16, 1677–1691.

    Article  CAS  Google Scholar 

  • Gabriel, M. C., & Williamson, D. G. (2004). Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environmental Geochemistry and Health, 26, 421–434.

    Article  CAS  Google Scholar 

  • Garrity, G. M., Brenner, D. J., Krieg, N. R., & Staley, J. T. (2005). Bergey’s manual of systematic bacteriology (2 nd ed) Vol. 2: the Proteobacteria (Part C) (pp. 206-207 and 573-574). New York: Springer.

  • Gaudet, C., Lingard, S., Cureton, P., Keenleyside, K., Smith, S., & Raju, G. (1995). Canadian environmental quality guidelines for mercury. Water, Air, & Soil Pollution, 80, 1149–1159.

    Article  CAS  Google Scholar 

  • Giotta, L., Agostiano, A., Italiano, F., Milano, F., & Trotta, M. (2006). Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere, 62(9), 1490–1499.

    Article  CAS  Google Scholar 

  • Glendinning, K. J., Macaskie, L. E., & Brown, N. L. (2005). Mercury tolerance of thermophilic Bacillus sp. and Ureibacillus sp. Biotechnology Letters, 27, 1657–1662.

    Article  CAS  Google Scholar 

  • Haferburg, G., & Kothe, B. (2007). Microbes and metals: interactions in the environment. Journal of Basic Microbiology, 47, 453–467.

    Article  CAS  Google Scholar 

  • Hideshi, S., Akira, S., & Shin-Ichiro, M. (2002). Biosorption of heavy metal ions on Rhodobacter sphaeroides and Alcaligenes eutrophus H16. Journal of Colloid and Interface Science, 197, 185–190.

    Google Scholar 

  • Hiraishi, A., Urata, K., & Satoh, T. (1995). A new genus of marine budding phototrophic bacteria, Rhodobium gen. nov., Which Includes Rhodobium orientis sp. nov. and Rhodobium marinum comb. nov. International Journal of Systematic and Evolutionary Microbiology, 45, 226–234.

    CAS  Google Scholar 

  • Imhoff, J. F. (1995). Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. In R. E. Blankenship, M. T. Madigan, & C. E. Bauer (Eds.), Anoxygenic photosynthetic bacteria (pp. 1–15). Netherlands: Kluwer Academic. Publishers.

    Google Scholar 

  • Imhoff, J. F. (2001). Transfer of Rhodopseudomonas acidophila to the new genus Rhodoblastus as Rhodoblastus acidophilus gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 51, 1863–1866.

    Article  CAS  Google Scholar 

  • HKGS (Hong Kong Government Secretariat) (1998). Management of dredged/excavated sediment planning, environmental lands bureau and works bureau. Joint Technical Circular XX. Government Secretariat, Hong Kong.

  • Kurniati, E., Arfarita, N., Imai, T., Higuchi, T., Kanno, A., Yamamoto, K., & Sekine, M. (2014). Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil. Journal of Environmental Sciences, 26, 1223–1231.

    Article  CAS  Google Scholar 

  • Lacerda, L. D., Soares, T. M., Costa, B. G. B., & Godoy, M. D. P. (2011). Mercury emission factors from intensive shrimp aquaculture and their relative importance to the Jaguaribe River Estuary, NE Brazil. Bulletin of Environmental Contamination and Toxicology, 87, 657–661.

    Article  CAS  Google Scholar 

  • Li, P., Feng, X., Liang, P., Chan, H. M., Yan, H., & Chen, L. (2013). Mercury in the seafood and human exposure in coastal area of Guangdong province, South China. Environmental Toxicology and Chemistry, 32(3), 541–547.

    Article  CAS  Google Scholar 

  • Masuda, S., Hori, K., Maruyama, F., Ren, S., Sugimoto, S., Yamamoto, N., et al. (2013). Whole-genome sequence of the purple photosynthetic bacterium Rhodovulum sulfidophilum strain W4. Genome Announcements, 1(4), e00577–13. doi:10.1128/genomeA.00577-13.

    Article  Google Scholar 

  • Nascimento, M. A., & Chartone-Souza, E. (2003). Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genetics and Molecular Research, 2(1), 92–101.

    Google Scholar 

  • Panwichian, S., Kantachote, D., Wittayaweerasak, B., & Mallavarapu, M. (2010). Isolation of purple nonsulfur bacteria for the removal of heavy metals and sodium from contaminated shrimp ponds. Electronic Journal of Biotechnology, 13(4), doi:10.2225/vol13-issue4-fulltext-8

  • Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., Streets, D. G., & Telmer, K. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10, 5951–5964.

    Article  CAS  Google Scholar 

  • Pollution Control Department (2004). Agricultural Soil Quality Standard. National Environment Committee, Minister of Environmental and Natural Resources, Thailand. http://www.pcd.go.th/info_serv/reg_std_soil01.html#s1. Accessed 12 September 2013

  • Pollution Control Department (2006). Marine water quality standard. Water Quality Management Office, Minister of Environmental and Natural Resources, Thailand. http://www.pcd.go.th/info_serv/reg_std_water02.html#s5. Accessed 12 September 2013

  • Sompongchaiyakul, P., & Sirinawin, W. (2007). Arsenic, chromium and mercury in surface sediment of Songkhla Lake system, Thailand. Asian Journal of Water Environmental Pollution, 4, 17–24.

    CAS  Google Scholar 

  • Srinivas, T. N. R., Kumar, P. A., Sasikala, C., Ramana, C. V., Suling, J., & Imhoff, J. F. (2006). Rhodovulum marinum sp. nov., a novel phototrophic purple non-sulfur alphaproteobacterium from marine tides of Visakhapatnam. India. International Journal of Systematic and Evolutionary Microbiology, 56, 1651–1656.

    Article  CAS  Google Scholar 

  • Thongraa-ra, W., & Parkpian, P. (2002). Total mercury concentrations in coastal areas of Thailand: a review. Science Asia, 28, 301–312.

    Google Scholar 

  • Urdiain, M., Lopez-Lopez, A., Gonzaloa, C., Busseb, H., Langer, S., Kampfer, P., & Rossello-Mora, R. (2008). Reclassification of Rhodobium marinum and Rhodobium pfennigii as Afifella marina gen. nov. comb. nov. and Afifella pfennigii comb. nov., a new genus of photoheterotrophic Alphaproteobacteria and emended descriptions of Rhodobium, Rhodobium orientis and Rhodobium gokarnense. Systematic and Applied Microbiology, 31, 339–351.

  • USEPA (2001). Appendix to Method 1631 total mercury in tissue, sludge, sediment, and soil by acid digestion and BrCl oxidation. Report No. EPA-821-R-01-013, January 2001.

  • USEPA (2002). Method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. United States Environmental Protection Agency, Office of Water 4303. Report No. EPA-821-R-02-019, August 2002.

  • Zeroual, Y., Moutaouakkil, A., Dzairi, F. Z., Talbi, M., Chung, P. U., Lee, K., & Blaghen, M. (2003). Purification and characterization of cytosolic mercuric reductase from Klebsiella pneumonia. Annals of Microbiology, 53, 149–160.

    CAS  Google Scholar 

  • Zeyaullah, M., Islam, B., & Ali, A. (2010). Isolation, identification and PCR amplification of merA gene from highly mercury polluted Yamuna river. African Journal of Biotechnology, 9(24), 3510–3514.

    CAS  Google Scholar 

  • Zhang, W., Chen, L., & Liu, D. (2012). Characterization of a marine-isolated mercury-resistant Pseudomonas putida strain SP1 and its potential application in marine mercury reduction. Applied Microbiology and Biotechnology, 93, 1305–1314.

    Article  CAS  Google Scholar 

  • Zhou, J., Bruns, M. A., & Tiedje, J. M. (1996). DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 62(2), 316–322.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Thailand Research Fund through the Royal Golden Jubilee (RGJ) Ph.D. Program, grant number PHD/0165/2552, and partly supported by the Graduate School, Prince of Songkla University. We thank Dr. Brian Hodgson for his assistance with the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duangporn Kantachote.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure 1

Inhibitory effect of HgCl2 against the growth of the selected PNSB strains grown in GA broth containing HgCl2 (0-4.0 mg/L) and 3 % NaCl under conditions of aerobic dark (A) and microaerobic light (B) for 72 h to determine IC50 values (DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukkata, K., Kantachote, D., Wittayaweerasak, B. et al. Distribution of Mercury in Shrimp Ponds and Volatilization of Hg by Isolated Resistant Purple Nonsulfur Bacteria. Water Air Soil Pollut 226, 148 (2015). https://doi.org/10.1007/s11270-015-2418-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2418-2

Keywords

Navigation