Skip to main content

Lead- and Mercury-Resistant Marine Bacteria and Their Application in Lead and Mercury Bioremediation

  • Chapter
  • First Online:
Marine Pollution and Microbial Remediation

Abstract

With rapid industrialisation, enormous amounts of industrial waste including heavy metals have accumulated in marine environments over several decades and require special attention. Untreated wastes from mining, metal refining industries, battery manufacturing industries, sewage sludge, power plants and waste incineration plants often contain substantially high levels of lead (Pb) and mercury (Hg); when dumped into marine and estuarine waters, these pose serious threat to environmental biota and urgently need to be removed from polluted marine/estuarine sites. Lead and mercury are non-bioessential, persistent and hazardous heavy metal pollutants of environmental concern. Bioremediation of heavy metals using Pb- and Hg-resistant bacteria has become a potential alternative to the existing technologies for the removal and/or recovery of toxic Pb and Hg from waste waters before releasing it into marine/estuarine water bodies for environmental safety. Various strategies through which marine/estuarine bacteria resist high concentrations of lead/mercury include efflux mechanisms, extracellular sequestration, biosorption, precipitation, reduction, volatilisation, alteration in cell morphology, enhanced siderophore production, altered permeability, demethylation and intracellular bioaccumulation. These unique characteristics of marine/estuarine bacteria proved to be an ideal tool in bioremediation of lead and mercury from contaminated marine and estuarine environmental sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alagarsamy R (2006) Distribution and seasonal variation of trace metals in surface sediments of the Mandovi estuary, west coast of India. Estuar Coast Shelf Sci 67:333–339

    Article  CAS  Google Scholar 

  • Allen RC, Tu YK, Navarez MJ, Bobbs AS, Friesen JW, Lorsch JR, Voet JG, Hamlett NV (2013) The mercury resistance (mer) operon in marine gliding flavobacterium, tenacibaculum discolor 9A5. FEMS Microbiol Ecol 83:135–148

    Article  CAS  Google Scholar 

  • Anthony E (2014) Bioremediation of mercury by biofilm forming mercury resistant marine bacteria. Dissertation, NIT, Rourkela

    Google Scholar 

  • Asmub M, Mullenders LHF, Hartwig A (2000) Interference by toxic metal compounds with isolated zinc finger DNA repair proteins. Toxicol Lett 112:227–231

    Google Scholar 

  • Attri K, Kerkar S (2011) Seasonal assessment of heavy metal pollution in tropical mangrove sediments (Goa, India). J Ecobiotechnol 3:9–15

    CAS  Google Scholar 

  • Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotics and metal resistance. Trends Microbiol 14:176–182

    Article  CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystem. FEMS Microbiol Rev 27:355–384

    Article  CAS  Google Scholar 

  • Bhaskar PV, Bhosle NB (2006) Bacterial extracellular polymeric substances (EPS) a carrier of heavy metals in the marine food-chain. Environ Int 32:192–198

    Article  Google Scholar 

  • Blindauer CA, Harrison MD, Robinson AK, Parkinson JA, Bowness PW, Sadler PJ, Robinson NJ (2002) Multiple bacteria encode metallothioneins and SmtA- like fingers. Mol Microbiol 45:1421–1432

    Article  CAS  Google Scholar 

  • Bonner WN (1984) Conservation and the Antarctic. In: Laws RM (ed) Antarctic ecology, vol II. Academic, London, pp 821–850

    Google Scholar 

  • Borremans B, Hobman JL, Provoost A, Brown NL, van der Lelie D (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183:5651–5658

    Article  CAS  Google Scholar 

  • Burnett M, Ng A, Settle D, Patterson CC (1980) Impact of man on coastal marine ecosystems. In: Branica M, Konrad Z (eds) Lead in the marine environment (pp 7–13). Proceedings of the International experts discussion on lead occurrence, fate and pollution in the ,marine environment, Rovinj, Yugoslavia, 18–22 October 1977. doi:10.1016/B978-0-08-022960-7.50006-3

  • Cameron RE (1992) Guide to site and soil description for hazardous waste characterization. Metals, 250. (Environmental Protection Agency EPA/600/ 4–91/029)

    Google Scholar 

  • Chamberlain AHL, Simmonds SE, Garn BJ (1988) Marine ‘copper-tolerant’ sulphate reducing bacteria and their effects on 90/10 copper-nickel (CA 706). Int Biodeter 24:213–219

    Article  CAS  Google Scholar 

  • Chapman JS (2003) Disinfectant resistance mechanisms, cross resistance, and co-resistance. Int Biodeterior Biodegradation 51:271–276

    Article  CAS  Google Scholar 

  • Coombs JM, Barkay T (2004) Molecular evidence for the evolution of metal homeostasis genes by lateral gene transfer in bacteria from the deep terrestrial subsurface. Appl Environ Microbiol 70:1698–1707

    Article  CAS  Google Scholar 

  • Dash HR, Das S (2012) Bioremediation of mercury and the importance of bacterial mer genes. Int Biodeterior Biodegradation 75:207–213

    Article  CAS  Google Scholar 

  • De J, Ramaiah N (2006) Occurrence of large fractions of mercury-resistant bacteria in the Bay of Bengal. Curr Sci 9:368–371

    Google Scholar 

  • De J, Ramaiah N, Mesquita A, Verlekar XN (2003) Tolerance to various toxicants by marine bacteria highly resistant to mercury. Mar Biotechnol 5:185–193

    Article  CAS  Google Scholar 

  • De J, Sarkar A, Ramaiah N (2006) Bioremediation of toxic substances by mercury resistant marine bacteria. Ecotoxicology 15:385–389

    Article  CAS  Google Scholar 

  • De J, Ramaiah N, Bhosle NB, Garg A, Vardanyan L, Nagle VL, Fukami K (2007) Potential of mercury-resistant marine bacteria for detoxification of chemicals of environmental concern. Microbes Environ 22:336–345

    Article  Google Scholar 

  • De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10:471–477

    Article  CAS  Google Scholar 

  • De J, Dash HR, Das S (2014) Mercury pollution and bioremediation—a case study on biosorption by a mercury-resistant marine bacterium. In: Das S (ed) Microbial biodegradation and bioremediation, pp 137–166. DOI: 10.1016/B978-0-12-800021-2.00006-6

  • Dirilgen N (2011) Mercury and lead: assessing the toxic effects on growth and metal accumulation by Lemna minor. Ecotoxicol Environ Saf 74:48–54

    Article  CAS  Google Scholar 

  • Duffus JH (2002) Heavy metals a meaningless term? IUPAC technical report. Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • Eisler R (1988) Lead hazards to fish, wildlife, and invertebrates: a synoptic review. US Fish Wildl Serv Biol Rep 85:1–14

    Google Scholar 

  • Fernandes N, Beiras R (2001) Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea urchin. Ecotoxicology 10:263–271

    Article  Google Scholar 

  • Gadd GM (1992) Microbial control of heavy metal pollution. In: Fry JC, Gadd GM, Herbert RA, Jones CW, Watson-Craiki IA (eds) Microbial control of pollution. Cambridge University Press, Cambridge, pp 59–88

    Google Scholar 

  • Gadd GM, White C (1993) Microbial treatment of metal pollution- a working biotechnology. Trends Biotechnol 11:353–359

    Article  CAS  Google Scholar 

  • Hamer DH (1986) Metallothioneins. Ann Rev Biochem 55:913–951

    Article  CAS  Google Scholar 

  • Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, Schwerdtle T, Burkle A (2002) Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect 110:797–799

    Article  CAS  Google Scholar 

  • Hintelmann H (2010) Organomercurials: their formation and pathways in the environment. Met Ions Life Sci 7:365–401

    Article  CAS  Google Scholar 

  • Huang C-C, Chien M-F, Lin K-H (2010) Bacterial mercury resistance of TnMERI1 and its’ application in bioremediation. In: Hamamura N, Suzuki S, Mendo S, Barroso CM, Iwata H, Tanabe S (eds) Interdisciplinary studies on environmental chemistry—biological responses to contaminants. Terrapub, Tokyo, pp 23–29

    Google Scholar 

  • Hynninen A, Tonismann K, Virta M (2010) Improving the sensitivity of bacterial bioreporters for heavy metals. Bioeng Bugs 1:132–138

    Article  Google Scholar 

  • Kumagai M, Nishimura H (1978) Mercury distribution in seawater in Minamata Bay and the origin of particulate mercury. J Oceanogr Soc Jpn 34(2):50–56

    Article  CAS  Google Scholar 

  • Lam TVP, Agovino XN, Roche L (2007) Linkage study of cancer risk among lead exposed workers in New Jersey. Sci Total Environ 372:455–462

    Article  CAS  Google Scholar 

  • Liu T, Nakashima S, Hirose K, Uemura Y, Shibasaka M, Katsuhara M, Kasamo K (2003) A metallothionein and CPx-ATPase handle heavy-metal tolerance in the filamentous cyanobacterium Oscillatoria brevis. FEBS Lett 542:159–163

    Article  CAS  Google Scholar 

  • Lohara K, Liyama R, Nakamura K, Silver S, Sakai M, Takeshita M, Furukawa K (2001) The mer operon of a mercury-resistant Pseudoalteromonas haloplanktis strain isolated from Minamata Bay, Japan. Appl Microbiol Biotechnol 56:736–741

    Article  Google Scholar 

  • Mason RP, Choi AL, Fitzgerald WF, Hammerschmidt CR, Lamborg CH, Soerensen AL, et al (2012) Mercury biogeochemical cycling in the ocean and policy implications. Environ Res. http://dx.doi.org/10.1016/j.envres.2012.03.013

  • Meng W, Qin Y, Zheng B, Zhang L (2008) J Environ Sci 20:814–819

    Article  CAS  Google Scholar 

  • Miller LR, Patel B, Dong A, Fiedler D, Falkowski M, Zelikova JSM (2005) NmerA, the metal binding domain of mercuric ion reductase, removes Hg2+ from proteins, delivers it to the catalytic core, and protects cells under glutathione depleted conditions. Biochemistry 44:11402–11416

    Article  Google Scholar 

  • Mire CE, Tourjee JA, O’Brien WF, Ramanujachary KV, Hecht GB (2004) Lead precipitation by Vibrio harveyi: evidence for novel quorum-sensing interactions. Appl Microbiol Biotechnol 70:855–864

    CAS  Google Scholar 

  • Naik MM, Dubey SK (2013) Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicol Environ Saf 98:1–7

    Article  CAS  Google Scholar 

  • Naik MM, Pandey A, Dubey SK (2012a) Pseudomonas aeruginosa strain WI-1 from Mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicol Environ Saf 79:129–133. Elsevier

    Google Scholar 

  • Naik MM, Pandey A, Dubey SK (2012b) Biological characterization of lead- enhanced exopolysaccharide produced by a lead resistant Enterobacter cloacae strain P2B. Biodegradation 23:775–783. Springer

    Google Scholar 

  • Naik MM, Shamim K, Dubey SK (2012c) Biological characterization of lead resistant bacteria to explore role of bacterial metallothionein in lead resistance. Curr Sci 103:426–429. Current Science Association, in collaboration with the Indian Academy of Sciences

    Google Scholar 

  • Naik MM, Pandey A, Dubey SK (2012d) Bioremediation of metals mediated by marine bacteria. In: Satyanarayana T et al (eds) Microorganisms in environmental management. doi:10.1007/978-94-007-2229-3_29

  • Naik MM, Dubey SK, Khanolkar D, D’Costa B (2013) P-type ATPase and MdrL efflux pump-mediated lead and multi-drug resistance in estuarine bacterial isolates. Curr Sci 105:1366–1372

    CAS  Google Scholar 

  • Nakamura K, Silver S (1994) Molecular analysis of mercury-resistant Bacillus isolates from sediment of Minamata Bay, Japan. Appl Environ Microbiol 60:4596–4599

    CAS  Google Scholar 

  • Narita M, Chiba K, Nishizawa H, Ishii H, Huang CC, Kawabata Z, Silver S, Endo G (2003) FEMS Microbiol Lett 223:73–82

    Article  CAS  Google Scholar 

  • Nascimento AMA, Chartone-Souza E (2003) Operon mer: bacterial resistance to mercury potential for bioremediation of contaminated environments. Genet Mol Res 2:92–101

    Google Scholar 

  • Neto JAB, Smith BJ, McAllister JJ (2000) Heavy metal concentrations in surface sediments in a nearshore environment, Jurujuba Sound, Southeast Brazil. Environ Pollut 109:1–9

    Article  Google Scholar 

  • Nies NH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  CAS  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol Biotechnol 14:186–199

    CAS  Google Scholar 

  • Nriagu JO (1978) The biogeochemistry of lead in the environment. Part B. Biological effects. Elsevier/North Holland Biomedical Press, Amsterdam, p 397

    Google Scholar 

  • Phung LT (1996) Bacterial mercury resistance proteins. Encycl Metalloproteins:209–217

    Google Scholar 

  • Ramaiah N, De J (2003) Unusual rise in mercury resistant bacteria in coastal environs. Microb Ecol 45:444–454

    Article  CAS  Google Scholar 

  • Ramessur R (2004) Statistical comparison and correlation of zinc and lead in estuarine sediments along the western coast of Mauritius. Environ Int 30:1039–1044

    Article  CAS  Google Scholar 

  • Ramond J-B, Berthe T, Lafite R, Deloffre J, Ouddance B, Petit F (2008) Relationships between hydrosedimentary processes and occurrence of mercury-resistant bacteria (merA) in estuary mudflats (Seine, France). Mar Pollut Bull 56:1168–1176

    Article  CAS  Google Scholar 

  • Rensing C, Ghosh M, Rosen BP (1999) Families of soft-metal-ion transporting ATPases. J Bacteriol 181:5891–5897

    CAS  Google Scholar 

  • Roane TM (1999) Lead resistance in two bacterial isolates from heavy metal-contaminated soils. Microb Ecol 37(3):218–224

    Article  CAS  Google Scholar 

  • Shamim K, Naik MM, Pandey A, Dubey SK (2013) Isolation and identification of Aeromonas caviae strain KS-1 as TBTC and lead resistant estuarine bacteria. Environ Monit Assess 185:5243–5249

    Article  CAS  Google Scholar 

  • Sinha R (2012) Bioaccumulation of mercury in marine bacteria: a novel approach of mercury remediation. Dissertation, NIT Orisa. pp 34–42

    Google Scholar 

  • Skei JM (1978) Serious mercury contamination of sediments in a Norwegian semi-enclosed bay. Mar Pollut Bull 9:191–193

    Article  CAS  Google Scholar 

  • Smith BJ, Orford JD (1989) Scales of pollution in estuarine sediment around the North Irish Sea. In: Sweeney JC (ed) The Irish sea, a resource at risk. Special publication no.3. Geographical Society of Ireland. pp 107–115

    Google Scholar 

  • Sonne C (2010) Health effects from long-range transported contaminants in Arctic top predators: an integrated review based on studies of polar bears and relevant model species. Environ Int 36:461–491

    Article  CAS  Google Scholar 

  • Taghavi S, Lesaulnier C, Monchy S, Wattiez R, Meargey M, van der Lelie D (2009) Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions. Antonie Van Leeuwenhoek 96:171–182

    Article  CAS  Google Scholar 

  • Wang Q, Kim D, Dionysiou DD, Sorial GA, Timberlake D (2004) Sources and remediation for mercury contamination in aquatic systems-a literature review. Environ Pollut 131:323–336

    Article  Google Scholar 

  • Watt GCM, Britton A, Gilmour HG, Moore MR, Murray GD, Robertson SJ (2000) Public health implications of new guidelines for lead in drinking water: a case study in an area with historically high water lead levels. Food Chem Toxicol 38:73–79

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Satish Shetye, Vice Chancellor of Goa University, for providing necessary facilities. Dr. Milind Naik also thank Government of India for financial support as SERB-DST young scientist project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milind M. Naik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Naik, M.M., Dubey, S.K. (2017). Lead- and Mercury-Resistant Marine Bacteria and Their Application in Lead and Mercury Bioremediation. In: Naik, M., Dubey, S. (eds) Marine Pollution and Microbial Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-10-1044-6_3

Download citation

Publish with us

Policies and ethics