Skip to main content
Log in

Iron Oxide Nanoparticle-Impregnated Alumina for Catalytic Ozonation of para-Chlorobenzoic Acid in Aqueous Solution

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A granular media synthesized using iron oxide nanoparticle-coated alumina (IONA) has been demonstrated as an effective solid catalyst in the heterogeneous catalytic ozonation of para-chlorobenzoic acid (pCBA). TEM analysis showed that iron oxide nanoparticles with an average size of 5–20 nm were well-coated onto an alumina surface. It was determined that the iron oxide nanoparticle coating increased the specific surface area by 54 times and the functional group density by 1.5 times. During catalytic ozonation at acidic pH levels, it was clearly observed that IONA increased the degradation of pCBA (98 %) through effective hydroxyl radical formation compared to bare alumina (9 %) under continuous ozonation processes. In comparing the R ct value, which represents the ratio of ozone exposure to hydroxyl radical exposure, the R ct of IONA was approximately four times higher than for bare alumina. In addition, IONA showed good stability for catalytic ozonation of pCBA in the reusability tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andreozzi, R., Insola, A., Caprio, V., Marotta, R., & Tufano, V. (1996). The use of manganese dioxide as a heterogeneous catalyst for oxalic acid ozonation in aqueous solution. Applied Catalysis A: General, 138(1), 75–81.

    Article  CAS  Google Scholar 

  • Bader, H., & Hoigné, J. (1981). Determination of ozone in water by the indigo method. Water Research, 15(4), 449–456.

    Article  CAS  Google Scholar 

  • Beltrán, F. J., Rivas, F. J., & Montero-de-Espinosa, R. (2003). Ozone-enhanced oxidation of oxalic acid in water with cobalt catalysts. 2. Heterogeneous catalytic ozonation. Industrial & Engineering Chemistry Research, 42(14), 3218–3224.

    Article  Google Scholar 

  • Beltrán, F. J., Rivas, F. J., & Montero-de-Espinosa, R. (2005). Iron type catalysts for the ozonation of oxalic acid in water. Water Research, 39(15), 3553–3564.

    Article  Google Scholar 

  • Chang, C.-C., Chiu, C.-Y., Chang, C.-Y., Chang, C.-F., Chen, Y.-H., Ji, D.-R., Yu, Y.-H., & Chiang, P.-C. (2009). Combined photolysis and catalytic ozonation of dimethyl phthalate in a high-gravity rotating packed bed. Journal of Hazardous Materials, 161(1), 287–293.

    Article  CAS  Google Scholar 

  • Dong, Y., He, K., Zhao, B., Yin, Y., Yin, L., & Zhang, A. (2007). Catalytic ozonation of azo dye active brilliant red X-3B in water with natural mineral brucite. Catalysis Communications, 8(11), 1599–1603.

    Article  CAS  Google Scholar 

  • Elovitz, M. S., & von Gunten, U. (1999). Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept. Ozone: Science & Engineering, 21(3), 239–260.

    Article  CAS  Google Scholar 

  • Glaze, W. H. (1987). Drinking-water treatment with ozone. Environmental Science & Technology, 21(3), 224–230.

    Article  CAS  Google Scholar 

  • He, K., Dong, Y. M., Li, Z., Yin, L., Zhang, A. M., & Zheng, Y. C. (2008). Catalytic ozonation of phenol in water with natural brucite and magnesia. Journal of Hazardous Materials, 159(2–3), 587–592.

    Article  CAS  Google Scholar 

  • Hossain, M. M., Atanda, L., Al-Yassir, N., & Al-Khattaf, S. (2012). Kinetics modeling of ethylbenzene dehydrogenation to styrene over a mesoporous alumina supported iron catalyst. Chemical Engineering Journal, 207–208, 308–321.

    Article  Google Scholar 

  • Huang, C. P., Dong, C., & Tang, Z. (1993). Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Management, 13(5–7), 361–377.

    Article  CAS  Google Scholar 

  • Huang, W.-J., Fang, G.-C., & Wang, C.-C. (2005). A nanometer-ZnO catalyst to enhance the ozonation of 2,4,6-trichlorophenol in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 260(1–3), 45–51.

    Article  CAS  Google Scholar 

  • Joo, D., Kim, J., Wonsik, S., Lee, S., Kim, Y., Lee, J., & Choi, S. (2002). Effect of preozonation in drinking water treatment using polyamine flocculant. Environmental Engineering Research, 7(4), 191–198.

    Article  Google Scholar 

  • Jung, H., Kim, J., & Choi, H. (2004). Reaction kinetics of ozone in variably saturated porous media. Journal of Environmental Engineering, 130(4), 432–441.

    Article  CAS  Google Scholar 

  • Jung, H., Park, H., Kim, J., Lee, J.-H., Hur, H.-G., Myung, N. V., & Choi, H. (2007). Preparation of biotic and abiotic iron oxide nanoparticles (IOnPs) and their properties and applications in heterogeneous catalytic oxidation. Environmental Science & Technology, 41(13), 4741–4747.

    Article  CAS  Google Scholar 

  • Jung, H., Kim, J.-W., Choi, H., Lee, J.-H., & Hur, H.-G. (2008). Synthesis of nanosized biogenic magnetite and comparison of its catalytic activity in ozonation. Applied Catalysis B: Environmental, 83(3–4), 208–213.

    Article  CAS  Google Scholar 

  • Karnik, B. S., Davies, S. H., Baumann, M. J., & Masten, S. J. (2005a). Fabrication of catalytic membranes for the treatment of drinking water using combined ozonation and ultrafiltration. Environmental Science & Technology, 39(19), 7656–7661.

    Article  CAS  Google Scholar 

  • Karnik, B. S., Davies, S. H. R., Chen, K. C., Jaglowski, D. R., Baumann, M. J., & Masten, S. J. (2005b). Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes. Water Research, 39(4), 728–734.

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern, B., Ziółek, M., & Nawrocki, J. (2003). Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Applied Catalysis B: Environmental, 46(4), 639–669.

    Article  CAS  Google Scholar 

  • Kastner, J. R., Ganagavaram, R., Kolar, P., Teja, A., & Xu, C. (2007). Catalytic ozonation of propanal using wood fly ash and metal oxide nanoparticle impregnated carbon. Environmental Science & Technology, 42(2), 556–562.

    Article  Google Scholar 

  • Lee, S.-M., Laldawngliana, C., & Tiwari, D. (2012). Iron oxide nano-particles-immobilized-sand material in the treatment of Cu(II), Cd(II) and Pb(II) contaminated waste waters. Chemical Engineering Journal, 195–196, 103–111.

    Article  Google Scholar 

  • Legube, B., & Karpel Vel Leitner, N. (1999). Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catalysis Today, 53(1), 61–72.

    Article  CAS  Google Scholar 

  • Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., & Alvarez, P. J. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Research, 42(18), 4591–4602.

    Article  CAS  Google Scholar 

  • Lim, H.-N., Choi, H., Hwang, T.-M., & Kang, J.-W. (2002). Characterization of ozone decomposition in a soil slurry: kinetics and mechanism. Water Research, 36(1), 219–229.

    Article  CAS  Google Scholar 

  • Lim, H., Lee, J., Jin, S., Kim, J., Yoon, J., & Hyeon, T. (2006). Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica. Chemical Communications, 4, 463–465.

    Article  Google Scholar 

  • Maity, D., & Agrawal, D. C. (2007). Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. Journal of Magnetism and Magnetic Materials, 308(1), 46–55.

    Article  CAS  Google Scholar 

  • Maliyekkal, S. M., Philip, L., & Pradeep, T. (2009). As(III) removal from drinking water using manganese oxide-coated-alumina: performance evaluation and mechanistic details of surface binding. Chemical Engineering Journal, 153(1–3), 101–107.

    Article  CAS  Google Scholar 

  • Masciangioli, T., & Zhang, W.-X. (2003). Peer reviewed: environmental technologies at the nanoscale. Environmental Science & Technology, 37(5), 102A–108A.

    Article  CAS  Google Scholar 

  • Nawrocki, J., & Kasprzyk-Hordern, B. (2010). The efficiency and mechanisms of catalytic ozonation. Applied Catalysis B: Environmental, 99(1–2), 27–42.

    Article  CAS  Google Scholar 

  • Park, H., & Choi, H. (2011). As(III) removal by hybrid reactive membrane process combined with ozonation. Water Research, 45(5), 1933–1940.

    Article  CAS  Google Scholar 

  • Park, J., An, K., Hwang, Y., Park, J.-G., Noh, H.-J., Kim, J.-Y., Park, J.-H., Hwang, N.-M., & Hyeon, T. (2004a). Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Materials, 3(12), 891–895.

    Article  CAS  Google Scholar 

  • Park, J., Choi, H., Ahn, K.-H., & Kang, J.-W. (2004b). Removal mechanism of natural organic matter and organic acid by ozone in the presence of goethite. Ozone: Science & Engineering, 26(2), 141–151.

    Article  CAS  Google Scholar 

  • Park, J., Choi, H., & Cho, J. (2004c). Kinetic decomposition of ozone and para-chlorobenzoic acid (pCBA) during catalytic ozonation. Water Research, 38(9), 2285–2292.

    Article  CAS  Google Scholar 

  • Park, H., Kim, Y., An, B., & Choi, H. (2012). Characterization of natural organic matter treated by iron oxide nanoparticle incorporated ceramic membrane-ozonation process. Water Research, 46(18), 5861–5870.

    Article  CAS  Google Scholar 

  • Qi, L., You, H., Zhang, Z., Feng, C., & van Agtmaal, S. (2013). Degradation of 4-chlorophenol by catalytic ozonation using γ-Al2O3/TiO2 supported manganese oxides in aqueous solution. International Journal of Electrochemical Science, 8(4), 5457–5468.

    CAS  Google Scholar 

  • Trapido, M., Versessinina, Y., Munter, R., & Kallas, J. (2005). Catalytic ozonation of m-Dinitrobenzene. Ozone: Science & Engineering, 27(5), 359–363.

    Article  CAS  Google Scholar 

  • von Gunten, U. (2003). Ozonation of drinking water: part I. Oxidation kinetics and product formation. Water Research, 37(7), 1443–1467.

    Article  Google Scholar 

  • von Gunten, U., Driedger, A., Gallard, H., & Salhi, E. (2001). By-products formation during drinking water disinfection: a tool to assess disinfection efficiency? Water Research, 35(8), 2095–2099.

    Article  Google Scholar 

  • Xu, Y., & Axe, L. (2005). Synthesis and characterization of iron oxide-coated silica and its effect on metal adsorption. Journal of Colloid and Interface Science, 282(1), 11–19.

    Article  CAS  Google Scholar 

  • Zach-Maor, A., Semiat, R., & Shemer, H. (2011). Synthesis, performance, and modeling of immobilized nano-sized magnetite layer for phosphate removal. Journal of Colloid and Interface Science, 357(2), 440–446.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This subject is supported by the Korea Ministry of Environment as “Converging Technology Project” and “Basic Research Projects in High-tech Industrial Technology” Project through a grant provided by GIST in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heechul Choi.

Additional information

Hosik Park and Jun Kim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, H., Kim, J., Jung, H. et al. Iron Oxide Nanoparticle-Impregnated Alumina for Catalytic Ozonation of para-Chlorobenzoic Acid in Aqueous Solution. Water Air Soil Pollut 225, 1975 (2014). https://doi.org/10.1007/s11270-014-1975-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1975-0

Keywords

Navigation