Skip to main content
Log in

Assessing Biomass and Metal Contents in Riparian Vegetation Along a Pollution Gradient Using an Unmanned Aircraft System

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Quantifying plant biomass and related processes such as element allocation is a major challenge at the scale of entire riparian zones. We applied sub-decimetre-resolution (5 cm) remote sensing using an unmanned aircraft system (UAS) in combination with field sampling to quantify riparian vegetation biomass at three locations (320-m river stretches) along a mining-impacted boreal river and estimated the amounts of Cd, Cu, and Zn stored in the dominant species. A species-level vegetation map was derived from visual interpretation of aerial images acquired using the UAS and field sampling to determine species composition and cover. Herbaceous and shrub biomass and metal contents were assessed by combining the vegetation maps with field sampling results. Riparian zone productivity decreased from 9.5 to 5.4 t ha−1 with increasing distance from the source of contamination, and the total amount of vegetation-bound Cd and Zn decreased from 24 to 0.4 and 3,488 to 211 g, respectively. Most Cu was stored at the central location. Biomass and metal contents indicated large variation between species. Salix spp. comprised only 17 % of the total dominant-species biomass but contained 95 % of all Cd and 65 % of all Zn. In contrast, Carex rostrata/vesicaria comprised 64 % of the total dominant-species biomass and contained 63 % of all Cu and 25 % of all Zn. Our study demonstrates the applicability of UAS for monitoring entire riparian zones. The method offers great potential for accurately assessing nutrient and trace element cycling in the riparian zone and for planning potential phytoremediation measures in polluted areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam, E., Mutanga, O., & Rugege, D. (2010). Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecology and Management, 18(3), 281–296.

    Article  Google Scholar 

  • Bryson, M., Reid, A., Ramos, F., & Sukkarieh, S. (2010). Airborne vision-based mapping and classification of large farmland environments. Journal of Field Robotics, 27(5), 632–655.

    Article  Google Scholar 

  • Chen, G. C., Liu, Z. K., Zhang, J. F., & Owens, G. (2012). Phytoaccumulation of copper in willow seedlings under different hydrological regimes. Ecological Engineering, 44, 285–289.

    Article  Google Scholar 

  • Dunford, R., Michel, K., Gagnage, M., Piegay, H., & Tremelo, M. L. (2009). Potential and constraints of unmanned aerial vehicle technology for the characterization of Mediterranean riparian forest. International Journal of Remote Sensing, 30(19), 4915–4935.

    Article  Google Scholar 

  • ESRI: Environmental Systems Research Institute (2010). ArcGIS 10.0. Redlands.

  • EU: European Union (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. http://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF. Accessed 6 May 2014.

  • Gibson, D. J. (2002). Methods in comparative plant population ecology. New York: Oxford University Press.

    Google Scholar 

  • Goetz, S. J. (2006). Remote sensing of riparian buffers: past progress and future prospects. Journal of the American Water Resources Association, 42(1), 133–143.

    Article  Google Scholar 

  • Gross, M. F., Hardisky, M. A., Klemas, V., & Wolf, P. L. (1987). Quantification of biomass of the marsh grass Spartina alterniflora Loisel using Landsat Thematic Mapper imagery. Photogrammetric Engineering and Remote Sensing, 53(11), 1577–1583.

    Google Scholar 

  • Hamada, Y., Stow, D. A., Coulter, L. L., Jafolla, J. C., & Hendricks, L. W. (2007). Detecting Tamarisk species (Tamarix spp.) in riparian habitats of Southern California using high spatial resolution hyperspectral imagery. Remote Sensing of Environment, 109(2), 237–248.

    Article  Google Scholar 

  • Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9pp.

    Google Scholar 

  • Hestir, E., Khanna, S., Andrew, M., Santos, M., & Viers, J. (2008). Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sensing of Environment, 112(11), 4034–4047.

    Article  Google Scholar 

  • Husson, E., Hagner, O., & Ecke, F. (2013). Unmanned aircraft systems help to map aquatic vegetation. Applied Vegetation Science. doi:10.1111/avsc.12072.

    Google Scholar 

  • Jacks, G., Lövgren, L., Löfgren, O., & Miskovsky, K. (2005). Study of the chemical and ecological status of Lake Hornträsket, mining district of Kristineberg, Northern Sweden. Paper presented at the International Conference on Mining and the Environment, Metals and Energy Recovery, Skellefteå, 27 June–1 July 2005. http://pure.ltu.se/portal/files/3370372/Article.pdf. Accessed 6 May 2014.

  • Jackson, L. J. (1998). Paradigms of metal accumulation in rooted aquatic vascular plants. Science of the Total Environment, 219(2–3), 223–231.

    Article  CAS  Google Scholar 

  • Klang-Westin, E., & Eriksson, J. (2003). Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant and Soil, 249(1), 127–137.

    Article  CAS  Google Scholar 

  • Kuzovkina, Y. A., Knee, M., & Quigley, F. (2004). Cadmium and copper uptake and translocation in five willow (Salix L.) species. International Journal of Phytoremediation, 6(3), 269–287.

    Article  CAS  Google Scholar 

  • Lomax, A., Corso, W., & Etro, J. 2005. Employing unmanned aerial vehicles (UAVs) as an element of the Integrated Ocean Observing System. OCEANS, 2005. Proceedings of MTS/IEEE, 1, 184–190. doi:10.1109/OCEANS.2005.1639759.

  • Michel, K., & Ludwig, B. (2005). Bioavailability and biogeochemistry of metals in the terrestrial environment. Metal Ions in Biological Systems, 44, 75–96.

    CAS  Google Scholar 

  • Mueller-Dombois, D., & Ellenberg, H. (2002). Aims and methods of vegetation ecology. New York: Wiley.

    Google Scholar 

  • Muller, E. (1997). Mapping riparian vegetation along rivers: old concepts and new methods. Aquatic Botany, 58(3–4), 411–437.

    Article  Google Scholar 

  • Mutanga, O., Adam, E., & Cho, M. (2012). High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18, 399–406.

    Article  Google Scholar 

  • Petersen, S. L., Stringham, T. K., & Laliberte, A. S. (2005). Classification of willow species using large-scale aerial photography. Rangeland Ecology & Management, 58(6), 582–587.

    Article  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56(1), 15–39.

    Article  CAS  Google Scholar 

  • Pugh, R. E., Dick, D. G., & Fredeen, A. L. (2002). Heavy metal (Pb, Zn, Cd, Fe, and Cu) contents of plant foliage near the anvil range lead/zinc mine, Faro, Yukon Territory. Ecotoxicology and Environmental Safety, 52(3), 273–279.

    Article  CAS  Google Scholar 

  • Rango, A., Laliberte, A., Herrick, J. E., Winters, C., Havstad, K., Steele, C., et al. (2009). Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management. Journal of Applied Remote Sensing, 3, 1–15.

    Google Scholar 

  • Samuelsson, F. (2010). Hornträsket: kvantifiering av bakgrundsläckage av metaller från mark till sjö. Umeå: Umeå University. Master’s thesis.

    Google Scholar 

  • Sjöblom, Å. (2003). Wetlands as a means to reduce the environmental impact of mine drainage waters. Linköping: Linköping University. PhD dissertation.

    Google Scholar 

  • Sjörs, H. (1999). The background: geology, climate and zonation. In H. Rydin, P. Snoeijs, & M. Diekmann (Eds.), Swedish plant geography (pp. 5–14). Uppsala: Svenska Växtgeografiska Sällskapet.

    Google Scholar 

  • StatSoft Inc. (2011). Statistica 10. Tulsa.

  • Strayer, D. (2010). Ecology of freshwater shore zones. Aquatic Sciences, 72(2), 127–163.

    Article  CAS  Google Scholar 

  • Swedish Environmental Protection Agency (Naturvårdsverket) (1999). Bedömningsgrunder för miljökvalitet: sjöar och vattendrag. Uppsala: Naturvårdsverket Förlag.

  • Tabacchi, E., Lambs, L., Guilloy, H., Planty Tabacchi, A. M., & Muller, E. (2000). Impacts of riparian vegetation on hydrological processes. Hydrological Processes, 14(16–17), 2959–2976.

    Article  Google Scholar 

  • Tempfli, K., Kerle, N., Huurneman, G. C., & Janssen, L. L. E. (Eds.). (2009). Principles of remote sensing. Enschede: ITC. http://www.itc.nl/library/papers_2009/general/principlesremotesensing.pdf. Accessed 6 May 2014.

  • Tormos, T., Kosuth, P., Durrieu, S., Villeneuve, B., & Wasson, J. G. (2011). Improving the quantification of land cover pressure on stream ecological status at the riparian scale using high spatial resolution imagery. Physics and Chemistry of the Earth, 36(12), 549–559.

    Article  Google Scholar 

  • Vandecasteele, B., De Vos, B., & Tack, F. M. G. (2002). Cadmium and zinc uptake by volunteer willow species and elder rooting in polluted dredged sediment disposal sites. Science of the Total Environment, 299(1–3), 191–205.

    Article  CAS  Google Scholar 

  • Vandecasteele, B., Quataert, P., & Tack, F. M. G. (2007). Uptake of Cd, Zn and Mn by willow increases during terrestrialisation of initially ponded polluted sediments. Science of the Total Environment, 380(1–3), 133–143.

    Article  CAS  Google Scholar 

  • Wetzel, R. (2001). Limnology. San Diego: Elsevier.

    Google Scholar 

  • Xiang, W., & Rengel, Z. (2009). Phytoremediation facilitates removal of nitrogen and phosphorus from eutrophicated water and release from sediment. Environmental Monitoring and Assessment, 157(1–4), 277–285.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Olle Hagner for help with the aerial survey. This work was conducted as part of the European project ImpactMin (project no. 244166 in FP7-ENV-2009-1) and the research programme WATERS, funded by the Swedish Environmental Protection Agency (Dnr 10/179). Grants from the Swedish Governmental Agency for Innovation Systems (VINNOVA, P32060-1) supported the contributions of Frauke Ecke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Husson.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material

For “Assessing Biomass and Metal Contents in Riparian Vegetation along a Pollution Gradient using an Unmanned Aircraft System”, Water, Air, & Soil Pollution, Eva Husson (eva.husson@slu.se), Fredrik Lindgren, and Frauke Ecke (PDF 902 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Husson, E., Lindgren, F. & Ecke, F. Assessing Biomass and Metal Contents in Riparian Vegetation Along a Pollution Gradient Using an Unmanned Aircraft System. Water Air Soil Pollut 225, 1957 (2014). https://doi.org/10.1007/s11270-014-1957-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-1957-2

Keywords

Navigation