Skip to main content

Advertisement

Log in

Evaluation of the soil profile quality of subsided land in a coal mining area backfilled with river sediment based on monitoring wheat growth biomass with UAV systems

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Underground coal mining leads to land subsidence, and the situation is particularly serious in the Coal-Grain Complex in eastern China, causing the crop production to be reduced or to be taken out. Backfilling with Yellow River sediment is one of the effective methods to solve the land subsidence in this area, but a key issue is how to select the optimal soil reconstruction profile so that the crop yield after backfilling and reclamation is unaffected. The main purpose of this study is to verify the feasibility of selecting the optimal soil reconstruction profile by rapid monitoring of crop growth and judging soil quality with the aid of unmanned aerial vehicle systems (UAVs). A control treatment and 13 experimental treatments were established for the study area. The control treatment consisted of using 30 cm topsoil and 90 cm subsoil and the topsoil is a proxy for native (undisturbed) soil from the study sites. All other treatments consisted of using varying combinations of subsoil and sediment overlain by 30 cm of topsoil. The vegetation indices from the UAV multispectral images, and the plant height and vegetation coverage from the UAV RGB images were used for estimation of the winter wheat biomass in a random forest regression. The results showed that the random forest regression model yielded accurate estimation of the aboveground biomass. Furthermore, knowledge of plant height and vegetation coverage improved the accuracy of prediction such that crop growth was well characterized. The optimal soil profile consisted of 0.3 m topsoil + 0.2 m subsoil + 0.2 m sediment + 0.2 m subsoil + 0.3 m sediment. A fast and effective airborne monitoring method for soil quality was established, thus providing greatly improved monitoring efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available because the data may also be used by other persons in our laboratory but are available from the corresponding author on reasonable request.

References

  • Ahirwal, J., Maiti, S. K., & Singh, A. K. (2017). Changes in ecosystem carbon pool and soil CO2 flux following post-mine reclamation in dry tropical environment, India. Science of the Total Environment, 583, 153–162. https://doi.org/10.1016/j.scitotenv.2017.01.043

    Article  CAS  Google Scholar 

  • Ashapure, A., Jung, J., Chang, A., Oh, S., Yeom, J., Maeda, M., ... & Smith, W. (2020). Developing a machine learning based cotton yield estimation framework using multi-temporal UAS data. ISPRS Journal of Photogrammetry and Remote Sensing169, 180-194. https://doi.org/10.1016/j.isprsjprs.2020.09.015

    Article  Google Scholar 

  • Banerjee, B. P., Spangenberg, G., & Kant, S. (2020). Fusion of spectral and structural information from aerial images for improved biomass estimation. Remote Sensing12(19), 3164. https://doi.org/10.3390/rs12193164

    Article  Google Scholar 

  • Barkley, Z. R., Lauvaux, T., Davis, K. J., Deng, A., Fried, A., Weibring, P., Richter, D., Walega, J. G., DiGangi, J., Ehrman, S. H., Ren, X., & Dickerson, R. R. (2019). Estimating methane emissions from underground coal and natural gas production in southwestern Pennsylvania. Geophysical Research Letters. https://doi.org/10.1029/2019gl082131

    Article  Google Scholar 

  • Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., ... & Bareth, G. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation39, 79-87. https://doi.org/10.1016/j.jag.2015.02.012

    Article  Google Scholar 

  • Blackburn, G. A. (1998). Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sensing of Environment, 66(3), 273–285. https://doi.org/10.1016/s0034-4257(98)00059-5

    Article  Google Scholar 

  • Cheng, L., Jiang, P. H., Chen, W., Li, M. C., Wang, L. Y., Gong, Y., Pian, Y. Z., Xia, N., Duan, Y. W., & Huang, Q. H. (2015). Farmland protection policies and rapid urbanization in China: A case study for Changzhou City. Land Use Policy, 48, 552–566. https://doi.org/10.1016/j.landusepol.2015.06.014

    Article  Google Scholar 

  • Duo, L. H., & Hu, Z. Q. (2018). Soil quality change after reclaiming subsidence land with Yellow River sediments. Sustainability, 10(11), 4310. https://doi.org/10.3390/su10114310

    Article  CAS  Google Scholar 

  • El-Hendawy, S. E., Alotaibi, M., Al-Suhaibani, N., Al-Gaadi, K., Hassan, W., Dewir, Y. H., ... & Schmidhalter, U. (2019). Comparative performance of spectral reflectance indices and multivariate modeling for assessing agronomic parameters in advanced spring wheat lines under two contrasting irrigation regimes. Frontiers in plant science10, 1537. https://doi.org/10.3389/fpls.2019.01537

    Article  Google Scholar 

  • Fan, H., Wang, L., Wen, B., & Du, S. (2021). A new model for three-dimensional Deformation extraction with single-track InSAR based on mining subsidence characteristics. International Journal of Applied Earth Observation and Geoinformation94, 102223. https://doi.org/10.1016/j.jag.2020.102223

  • Fang, L., Xinju, L., Le, H., & Anran, S. (2020). A long-term study on the soil reconstruction process of reclaimed land by coal gangue filling. Catena195, 104874. https://doi.org/10.1016/j.catena.2020.104874

  • Fern, R. R., Foxley, E. A., Bruno, A., & Morrison, M. L. (2018). Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland. Ecological Indicators,94, 16–21. https://doi.org/10.1016/j.ecolind.2018.06.029

    Article  Google Scholar 

  • Filgueiras, R., Almeida, T. S., Mantovani, E. C., Dias, S. H. B., Fernandes-Filho, E. I., da Cunha, F. F., & Venancio, L. P. (2020). Soil water content and actual evapotranspiration predictions using regression algorithms and remote sensing data. Agricultural Water Management241, 106346. https://doi.org/10.1016/j.agwat.2020.106346

  • Fu, Y., Yang, G., Li, Z., Song, X., Li, Z., Xu, X., ... & Zhao, C. (2020). Winter wheat nitrogen status estimation using UAV-based RGB imagery and gaussian processes regression. Remote Sensing12(22), 3778. https://doi.org/10.3390/rs12223778

  • Gao, G., Xiao, K., & Jia, Y. (2020). A spraying path planning algorithm based on colour-depth fusion segmentation in peach orchards. Computers and Electronics in Agriculture173, 105412. https://doi.org/10.1016/j.compag.2020.105412

  • Gebremedhin, A., Badenhorst, P., Wang, J., Giri, K., Spangenberg, G., & Smith, K. (2019). Development and validation of a model to combine NDVI and plant height for high-throughput phenotyping of herbage yield in a perennial ryegrass breeding program. Remote Sensing, 11(21), 2494. https://doi.org/10.3390/rs11212494

  • Gilliot, J. M., Michelin, J., Hadjard, D., & Houot, S. (2021). An accurate method for predicting spatial variability of maize yield from UAV-based plant height estimation: a tool for monitoring agronomic field experiments. Precision Agriculture22(3), 897-921. https://doi.org/10.1007/s11119-020-09764-w

    Article  Google Scholar 

  • Grinberg, N. F., Orhobor, O. I., & King, R. D. (2019). An evaluation of machine-learning for predicting phenotype: studies in yeast, rice, and wheat. Machine Learning, 109, 251-277. https://doi.org/10.1007/s10994-019-05848-5

  • Gong, Y. L., Hu, Z. Q., & McSweeney, K. (2020). Reclaiming subsidized land: An evaluation of coal gangue interlayers. Advances in Materials Science and Engineering, 2020(2020), 1–12. https://doi.org/10.1155/2020/5740659

    Article  CAS  Google Scholar 

  • Günlü, A., Ercanlı, I., Keleş, S., & Anlar, H. C. (2015). Modelling of stand volume and tree density using Spot-4 satellite image: A case study in Devrez planning unit. International Journal of Global Warming, 7(4), 454. https://doi.org/10.1504/ijgw.2015.070047

    Article  Google Scholar 

  • Guo, Y., Fu, Y., Hao, F., Zhang, X., Wu, W., Jin, X., Robin Bryant, C., Senthilnath, J. (2021). Integrated phenology and climate in rice yields prediction using machine learning methods. Ecological Indicators120, 106935. https://doi.org/10.1016/j.ecolind.2020.106935

  • Gupta, D. K., Rai, U. N., Tripathi, R. D., & Inouhe, M. (2002). Impacts of fly-ash on soil and plant responses. Journal of Plant Research115(6), 401-409.

    Article  CAS  Google Scholar 

  • Hamuda, E., Glavin, M., & Jones, E. (2016). A survey of image processing techniques for plant extraction and segmentation in the field. Computers and Electronics in Agriculture, 125, 184–199. https://doi.org/10.1016/j.compag.2016.04.024

    Article  Google Scholar 

  • Hosseini, M., McNairn, H., Mitchell, S., Dingle Robertson, L., Davidson, A., & Homayouni, S. (2019). Synthetic aperture radar and optical satellite data for estimating the biomass of corn. International Journal of Applied Earth Observation and Geoinformation, 83, 101933. https://doi.org/10.1016/j.jag.2019.101933

    Article  Google Scholar 

  • Hu, Z. Q., Duo, L. H., & Shao, F. (2018). Optimal thickness of soil cover for reclaiming subsided land with Yellow River sediments. Sustainability, 10(11), 3853. https://doi.org/10.3390/su10113853

    Article  CAS  Google Scholar 

  • Hu, Z. Q., Shao, F., & McSweeney, K. (2017). Reclaiming subsided land with Yellow River sediments: Evaluation of soil-sediment columns. Geoderma, 307, 210–219. https://doi.org/10.1016/j.geoderma.2017.06.027

    Article  CAS  Google Scholar 

  • Jordan, C. F. (1969). Derivation of leaf area index from quality of light on the forest floor. Ecology, 50(4), 663–666.

    Article  Google Scholar 

  • Kim, S. C., Hong, Y. K., Lee, S. P., Oh, S. M., Lim, K. J., Yang, J. E. (2017). Calculating soil quality index for biomass production based on soil chemical properties. 한국토양비료학회지, 50(1), 56–64. https://doi.org/10.7745/KJSSF.2017.50.1.056

    Article  Google Scholar 

  • Kumar, D., & Singh, B. (2003). The use of coal fly ash in sodic soil reclamation. Land Degradation & Development, 14(3), 285–299. https://doi.org/10.1002/ldr.557

    Article  Google Scholar 

  • Li, G., Wang, J. L., Wang, Y. J., Wei, H. S., Ochir, A., Davaasuren, D., Chonokhuu, S., & Nasanbat, E. (2019). Spatial and temporal variations in grassland production from 2006 to 2015 in Mongolia along the China-Mongolia railway. Sustainability, 11(7), 2177. https://doi.org/10.3390/su11072177

    Article  Google Scholar 

  • Liu, H., Zhu, H., & Wang, P. (2016). Quantitative modelling for leaf nitrogen content of winter wheat using UAV-based hyperspectral data. International Journal of Remote Sensing, 38(8–10), 2117–2134. https://doi.org/10.1080/01431161.2016.1253899

    Article  Google Scholar 

  • Liu, N., Liu, G., & Sun, H. (2020). Real-time detection on spad value of potato plant using an in-field spectral imaging sensor system. Sensors20(12), 3430. https://doi.org/10.3390/s20123430

  • Liu, X. Y., Bai, Z. K., Zhou, W., Cao, Y. G., & Zhang, G. J. (2017). Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau, China. Ecological Engineering, 98, 228–239. https://doi.org/10.1016/j.ecoleng.2016.10.078

    Article  Google Scholar 

  • Maesano, M., Khoury, S., Nakhle, F., Firrincieli, A., Gay, A., Tauro, F., & Harfouche, A. (2020). UAV-Based LiDAR for High-Throughput Determination of Plant Height and Above-Ground Biomass of the Bioenergy Grass Arundo donax. Remote Sensing12(20), 3464. https://doi.org/10.3390/rs12203464

  • Maiti, S. K. (2013). Ecorestoration of the coalmine degraded lands. Springer.

    Book  Google Scholar 

  • Milas, A. S., Romanko, M., Reil, P., Abeysinghe, T., & Marambe, A. (2018). The importance of leaf area index in mapping chlorophyll content of corn under different agricultural treatments using UAV images. International Journal of Remote Sensing, 39(15–16), 5415–5431. https://doi.org/10.1080/01431161.2018.1455244

    Article  Google Scholar 

  • Mukhopadhyay, S., Masto, R. E., Yadav, A., George, J., Ram, L. C., & Shukla, S. P. (2016). Soil quality index for evaluation of reclaimed coal mine spoil. Science of the Total Environment, 542, 540–550. https://doi.org/10.1016/j.scitotenv.2015.10.035

    Article  CAS  Google Scholar 

  • Myneni, R. B., Hall, F. G., Sellers, P. J., & Marshak, A. L. (1995). The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 481–486. https://doi.org/10.1109/36.377948

    Article  Google Scholar 

  • Pölönen, I., Saari, H., Kaivosoja, J., Honkavaara, E., & Pesonen, L. (2013). Hyperspectral imaging based biomass and nitrogen content estimations from light-weight UAV. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XV (Vol. 8887, p. 88870J). International Society for Optics and Photonics. https://doi.org/10.1117/12.2028624

    Article  Google Scholar 

  • Qu, J. F., Hou, Y. L., Ge, M. Y., Wang, K., Liu, S., Zhang, S. L., Li, G., & Chen, F. (2017). Carbon dynamics of reclaimed coal mine soil under agricultural use: A chronosequence study in the Dongtan Mining Area, Shandong Province. China. Sustainability, 9(4), 629. https://doi.org/10.3390/su9040629

    Article  CAS  Google Scholar 

  • Ren, H., Xiao, W., Zhao, Y. L., & Hu, Z. Q. (2020). Land damage assessment using maize aboveground biomass estimated from unmanned aerial vehicle in high groundwater level regions affected by underground coal mining. Environmental Science and Pollution Research, 27, 21666–21679.

    Article  CAS  Google Scholar 

  • Ren, H., Zhao, Y. L., Xiao, W., & Hu, Z. Q. (2019). A review of UAV monitoring in mining areas: Current status and future perspectives. International Journal of Coal Science & Technology, 6(3), 320–333.

    Article  Google Scholar 

  • Schirrmann, M., Hamdorf, A., Garz, A., Ustyuzhanin, A., & Dammer, K. H. (2016). Estimating wheat biomass by combining image clustering with crop height. Computers and Electronics in Agriculture, 121, 374–384. https://doi.org/10.1016/j.compag.2016.01.007

    Article  Google Scholar 

  • Tang, Q., Li, L., Zhang, S., Zheng, L., & Mao, C. H. (2018). Characterization of heavy metals in coal gangue-reclaimed soils from a coal mining area. Journal of Geochemical Exploration, 186, 1–11.

    Article  CAS  Google Scholar 

  • Tunca, E., Köksal, E. S., Çetin, S., Ekiz, N. M., & Balde, H. (2018). Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images. Environmental monitoring and assessment190(11), 1-1. https://doi.org/10.1007/s10661-018-7064-x

  • Varela, S., Assefa, Y., Prasad, P. V. V., Peralta, N. R., & Ciampitti, I. A. (2017). Spatio-temporal evaluation of plant height in corn via unmanned aerial systems. Journal of Applied Remote Sensing, 11(3), 1.

  • Walter, J. D., Edwards, J., McDonald, G., & Kuchel, H. (2019). Estimating biomass and canopy height with LiDAR for field crop breeding. Frontiers in plant science10, 1145. https://doi.org/10.3389/fpls.2019.01145

  • Wang, G., Liu, S., Liu, T., Fu, Z., Yu, J., & Xue, B. (2019). Modelling above-ground biomass based on vegetation indexes: a modified approach for biomass estimation in semi-arid grasslands. International Journal of Remote Sensing40(10), 3835-3854. https://doi.org/10.1080/01431161.2018.1553319

  • Wang, P. J., Hu, Z. Q., Shao, F., Jiang, Z. D., Qiao, Z. Y., Liu, D. W., & Chen, Y. K. (2014). Feasibility analysis of Yellow River sediment used as the filling reclamation material of mining subsidence land. Journal of China Coal Society, 39, 1133–1139.

  • Wang, P., Hu, Z., Yost, R. S., Shao, F., Liu, J., & Li, X. (2016). Assessment of chemical properties of reclaimed subsidence land by the integrated technology using Yellow River sediment in Jining, China. Environmental Earth Sciences75(12), 1-15. https://doi.org/10.1007/s12665-016-5848-2

  • Wang, X. T., Hu, Z. Q., & Liang, Y. S. (2020). Impact of interlayer on moisture characteristics of reclaimed soil backfilled with yellow river sediments. International Journal of Agricultural and Biological Engineering, 13(1), 153–159.

    Article  Google Scholar 

  • Wang, Y. H., Xin, L. J., Zhang, H. Z., & Li, Y. Q. (2019). an estimation of the extent of rent-free farmland transfer and its driving forces in rural China: A multilevel logit model analysis. Sustainability, 11(11), 3161. https://doi.org/10.3390/su11113161

    Article  Google Scholar 

  • Wu, H., Xiong, D. H., Xiao, L., Zhang, S., Yuan, Y., Su, Z. A., ... & Yang, D. (2018). Effects of vegetation coverage and seasonal change on soil microbial biomass and community structure in the dry-hot valley region. Journal of Mountain Science15(7), 1546-1558. https://doi.org/10.1007/s11629-017-4650-2

    Article  Google Scholar 

  • Xiao, W., Fu, Y. H., Wang, T., & Lv, X. J. (2018). Effects of land use transitions due to underground coal mining on ecosystem services in high groundwater table areas: A case study in the Yanzhou coalfield. Land Use Policy, 71, 213–221. https://doi.org/10.1016/j.landusepol.2017.11.059

    Article  Google Scholar 

  • Xiao, W., & Hu, Z. Q. (2014). GIS-based pre-mining land damage assessment for underground coal mines in high groundwater area. International Journal of Mining & Mineral Engineering, 5(3), 245–255.

    Article  Google Scholar 

  • Xiao, W., Hu, Z. Q., Yoginder, P. C., & Zhao, Y. L. (2014). Dynamic subsidence simulation and topsoil removal strategy in high-groundwater table and underground coal mining area- a case study in Shandong Province. International Journal of Mining, Reclamation and Environment, 28(4), 250–263.

    Article  Google Scholar 

  • Yang, G. H., Hu, Z. Q., Zhao, Y. L., Yang, Y. Q., & Yu, Y. (2014). Proposals on countermeasures of reclamation control in coal mining subsidence land with high underground water level. Coal Eng, 46, 91–95.

  • Yang, R., Wang, Y., & Ding, C. (2016). Laboratory study of wave propagation due to explosion in a jointed medium. International Journal of Rock Mechanics and Mining Sciences, 81, 70–78. https://doi.org/10.1016/j.ijrmms.2015.10.014

  • Yoginder, P. C. (2018). Concurrent mining and reclamation for underground coal mining subsidence impacts in China. International Journal of Coal Science & Technology, 5(1), 18–35.

    Article  Google Scholar 

  • Yuan, M., Burjel, J. C., Isermann, J., Goeser, N. J., & Pittelkow, C. M. (2019). Unmanned aerial vehicle–based assessment of cover crop biomass and nitrogen uptake variability. Journal of Soil and Water Conservation, 74(4), 350–359. https://doi.org/10.2489/jswc.74.4.350

    Article  Google Scholar 

  • Yue, J. B., Feng, H. K., Jin, X. L., Yuan, H. H., Li, Z. H., Zhou, C. Q., Yang, G. J., & Tian, Q. J. (2018). A comparison of crop parameters estimation using images from UAV-mounted snapshot hyperspectral sensor and high-definition digital camera. Remote Sensing, 10(7), 1138. https://doi.org/10.3390/rs10071138

    Article  Google Scholar 

  • Yue, J. B., Yang, G. J., Tian, Q. J., Feng, H. K., Xu, K. J., & Zhou, C. Q. (2019). Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 226–244. https://doi.org/10.1016/j.isprsjprs.2019.02.022

    Article  Google Scholar 

  • Zhang, H., Sun, Y., Chang, L., Qin, Y., Chen, J., Qin, Y., Du, J. X., Yi, S. H., Wang, Y. (2018). Estimation of grassland canopy height and aboveground biomass at the quadrat scale using unmanned aerial vehicle. Remote sensing10(6), 851. https://doi.org/10.3390/rs10060851

  • Zhang, K., Xu, L. J., Huang, G. D., Meng, X. Y., Yao, J. X., & Jiang, B. X. (2020). Coupled variations of soil temperature and moisture in reclaimed fields filled with coal gangue of different grain size distributions. Journal of Soils and Sediments20(4), 2248–2259. https://doi.org/10.1007/s11368-020-02579-2

    Article  Google Scholar 

  • Zhang, S. M., Zhao, G. X., Lang, K., Su, B. W., Chen, X. N., Xi, X., & Zhang, H. B. (2019). Integrated satellite, unmanned aerial vehicle (UAV) and ground inversion of the SPAD of winter wheat in the reviving stage. Sensors, 19(7), 1485. https://doi.org/10.3390/s1907148

    Article  CAS  Google Scholar 

  • Zhang, Y., & Shao, Z. F. (2021). Assessing of urban vegetation biomass in combination with lidar and high-resolution remote sensing images. International Journal of Remote Sensing. https://doi.org/10.1080/01431161.2020.1820618

    Article  Google Scholar 

  • Zhao, Y., Zheng, W., Xiao, W., Zhang, S., Lv, X., & Zhang, J. (2020). Rapid monitoring of reclaimed farmland effects in coal mining subsidence area using a multi-spectral UAV platform. Environmental Monitoring and Assessment192(7), 1–19. https://doi.org/10.1007/s10661-020-08453-5

Download references

Funding

This work was supported by the National Key Technology Research and Development Program (2012BAC04B03) during the Twelfth Five-Year Plan Period, the National Natural Science Foundation of China (41771542), Funds of the National Natural Science Foundation of China, Approval No. 42071250, National Natural Science Foundation (Grant No. 41807511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenqi Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Lyu, X., Xiao, W. et al. Evaluation of the soil profile quality of subsided land in a coal mining area backfilled with river sediment based on monitoring wheat growth biomass with UAV systems. Environ Monit Assess 193, 576 (2021). https://doi.org/10.1007/s10661-021-09250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09250-4

Keywords

Navigation