Skip to main content

Advertisement

Log in

Evaluation of Subcritical Water Extraction Process for Remediation of Pesticide-Contaminated Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, the effectiveness of subcritical water extraction (SCWE) was assessed by extracting four pesticides, namely diazinon, parathion, phenthoat, and EPN, from contaminated soil. The extraction efficiencies of different temperatures (25, 75, 100, 125, and 150 °C); times (10, 20, 30, and 40 min); pressures (1, 2, and 3 MPa); and water flow rates (0.5, 0.7, 1.0, and 1.5 mL/min) were investigated. The optimum temperature, time, pressure, and flow rate were found to be 150 °C, 20 min, 2 MPa, and 0.5 mL/min, respectively, in lab-scale. At this operating condition, the residual concentration of pesticide was less than 0.5 mg/kg, corresponding to an extraction efficiency of 99.9 %. The aim of this study was to also evaluate the removal efficiency on 30- and 167-fold scale-up extraction at optimum extraction condition obtained from lab-scale studies. The scale-up method considering constant ratio of the volume of water to soil mass was a feasible procedure. The results of our study suggest that SCWE is a promising option for effective disposal of pesticide-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Chang, M. S., Shen, J. Y., Yang, S.-H., & Wu, G. J. (2011). Subcritical water extraction for the remediation of phthalate ester-contaminated soil. Journal of Hazardous Materials, 192(3), 1203–1209.

    Article  CAS  Google Scholar 

  • Chen, S.-S., Taylor, J. S., Mulford, L. A., & Norris, C. D. (2004). Influences of molecular weight, molecular size, flux, and recovery for aromatic pesticide removal by nanofiltration membranes. Desalination, 160(2), 103–111.

    Article  CAS  Google Scholar 

  • Chienthavorn, O., & Su-in, P. (2006). Modified superheated water extraction of pesticides from spiked sediment and soil. Analytical and Bioanalytical Chemistry, 385(1), 83–89.

    Article  CAS  Google Scholar 

  • Conte, E., Milani, R., Morali, G., & Abballe, F. (1997). Comparison between accelerated solvent extraction and traditional extraction methods for the analysis of the herbicide diflufenican in soil. Journal of Chromatography. A, 765(1), 121–125.

    Article  CAS  Google Scholar 

  • Cycoń, M., Wójcik, M., & Piotrowska-Seget, Z. (2009). Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere, 76(4), 494–501.

    Article  Google Scholar 

  • Cycoń, M., Żmijowska, A., Wójcik, M., & Piotrowska-Seget, Z. (2013). Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils. Journal of Environmental Management, 117, 7–16.

    Article  Google Scholar 

  • Ghoreishi, S. M., & Shahrestani, R. G. (2009). Subcritical water extraction of mannitol from olive leaves. Journal of Food Engineering, 93(4), 474–481.

    Article  CAS  Google Scholar 

  • Hawthorne, S. B., Yang, Y., & Miller, D. J. (1994). Extraction of organic pollutants from environmental solids with sub- and supercritical water. Analytical Chemistry, 66(18), 2912–2920.

    Article  CAS  Google Scholar 

  • Hawthorne, S. B., Grabanski, C. B., Martin, E., & Miller, D. J. (2000a). Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: recovery, selectivity and effects on sample matrix. Journal of Chromatography. A, 892(1–2), 421–433.

    Article  CAS  Google Scholar 

  • Hawthorne, S. B., Lagadec, A. J. M., Kalderis, D., Lilke, A. V., & Miller, D. J. (2000b). Pilot-scale destruction of TNT, RDX, and HMX on contaminated soils using subcritical water. Environmental Science & Technology, 34(15), 3224–3228.

    Article  CAS  Google Scholar 

  • Ho, C. H. L., Cacace, J. E., & Mazza, G. (2008). Mass transfer during pressurized low polarity water extraction of lignans from flaxseed meal. Journal of Food Engineering, 89(1), 64–71.

    Article  Google Scholar 

  • Hussen, A., Westbom, R., Megersa, N., Mathiasson, L., & Björklund, E. (2006). Development of a pressurized liquid extraction and clean-up procedure for the determination of α-endosulfan, β-endosulfan and endosulfan sulfate in aged contaminated Ethiopian soils. Journal of Chromatography. A, 1103(2), 202–210.

    Article  CAS  Google Scholar 

  • Hussen, A., Westbom, R., Megersa, N., Mathiasson, L., & Björklund, E. (2007). Selective pressurized liquid extraction for multi-residue analysis of organochlorine pesticides in soil. Journal of Chromatography. A, 1152(1–2), 247–253.

    Article  CAS  Google Scholar 

  • Islam, M. N., Jo, Y.-T., & Park, J.-H. (2012). Remediation of PAHs contaminated soil by extraction using subcritical water. Journal of Industrial and Engineering Chemistry, 18(5), 1689–1693.

    Article  CAS  Google Scholar 

  • Kawashima, A., Watanabe, S., Iwakiri, R., & Honda, K. (2009). Removal of dioxins and dioxin-like PCBs from fish oil by countercurrent supercritical CO2 extraction and activated carbon treatment. Chemosphere, 75(6), 788–794.

    Article  CAS  Google Scholar 

  • Kronholm, J., Kalpala, J., Hartonen, K., & Riekkola, M.-L. (2002). Pressurized hot water extraction coupled with supercritical water oxidation in remediation of sand and soil containing PAHs. Journal of Supercritical Fluids, 23(2), 123–134.

    Article  CAS  Google Scholar 

  • Lagadec, A. J. M., Miller, D. J., Lilke, A. V., & Hawthorne, S. B. (2000). Pilot-scale subcritical water remediation of polycyclic aromatic hydrocarbon- and pesticide-contaminated soil. Environmental Science & Technology, 34(8), 1542–1548.

    Article  CAS  Google Scholar 

  • Latawiec, A. E., & Reid, B. J. (2010). Sequential extraction of polycyclic aromatic hydrocarbons using subcritical water. Chemosphere, 78(8), 1042–1048.

    Article  CAS  Google Scholar 

  • Latawiec, A. E., Swindell, A. L., & Reid, B. J. (2008). Environmentally friendly assessment of organic compound bioaccessibility using sub-critical water. Environmental Pollution, 156(2), 467–473.

    Article  CAS  Google Scholar 

  • McGowin, A. E., Adom, K. K., & Obubuafo, A. K. (2001). Screening of compost for PAHs and pesticides using static subcritical water extraction. Chemosphere, 45(6–7), 857–864.

    Article  CAS  Google Scholar 

  • Mezzomo, N., Martínez, J., & Ferreira, S. R. S. (2009). Supercritical fluid extraction of peach (Prunus persica) almond oil: kinetics, mathematical modeling and scale-up. Journal of Supercritical Fluids, 51(1), 10–16.

    Article  CAS  Google Scholar 

  • MOE. (2008). The Korean Standard Test (KST) methods for soils. Gwachun, Kyunggi in South Korea: Korean Ministry of Environment.

    Google Scholar 

  • MOE. (2011). The soil environment preservation act. Gwachun, Kyunggi in South Korea: Korean Ministry of Environment.

    Google Scholar 

  • Montero, G. A. (1996). Scale-up and economic analysis for the design of supercritical fluid extraction equipment for remediation of soil. Environmental Progress, 15, 111–121.

    Article  Google Scholar 

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology, 60(1–4), 371–380.

    Article  Google Scholar 

  • Nowakowska, M., Sterzel, M., Zapotoczny, S., & Kot, E. (2005). Photosensitized degradation of ethyl parathion pesticide in aqueous solution of anthracene modified photoactive dextran. Applied Catalysis B: Environmental, 57(1), 1–8.

    Article  CAS  Google Scholar 

  • Prado, J. M., Prado, G. H. C., & Meireles, M. A. A. (2011). Scale-up study of supercritical fluid extraction process for clove and sugarcane residue. Journal of Supercritical Fluids, 56(3), 231–237.

    Article  CAS  Google Scholar 

  • Prado, J. M., Dalmolin, I., Carareto, N. D. D., Basso, R. C., Meirelles, A. J. A., Vladimir Oliveira, J., et al. (2012). Supercritical fluid extraction of grape seed: process scale-up, extract chemical composition and economic evaluation. Journal of Food Engineering, 109(2), 249–257.

    Article  CAS  Google Scholar 

  • Purnomo, A. S., Mori, T., Takagi, K., & Kondo, R. (2011). Bioremediation of DDT contaminated soil using brown-rot fungi. International Biodeterioration & Biodegradation, 65(5), 691–695.

    Article  CAS  Google Scholar 

  • Quan, C., Li, S., Tian, S., Xu, H., Lin, A., & Gu, L. (2004). Supercritical fluid extraction and clean-up of organochlorine pesticides in ginseng. Journal of Supercritical Fluids, 31(2), 149–157.

    Article  CAS  Google Scholar 

  • Ramamurthy, A. S., Vo, D., Li, X. J., & Qu, J. (2008). Surfactant-enhanced removal of Cu (II) and Zn (II) from a contaminated sandy soil. Water, Air, and Soil Pollution, 190(1–4), 197–207.

    Article  CAS  Google Scholar 

  • Richter, B. E., Jones, B. A., Ezzell, J. L., Porter, N. L., Avdalovic, N., & Pohl, C. (1996). Accelerated solvent extraction: a technique for sample preparation. Analytical Chemistry, 68(6), 1033–1039.

    Article  CAS  Google Scholar 

  • Richter, P., Sepúlveda, B., Oliva, R., Calderón, K., & Seguel, R. (2003). Screening and determination of pesticides in soil using continuous subcritical water extraction and gas chromatography–mass spectrometry. Journal of Chromatography. A, 994(1–2), 169–177.

    Article  CAS  Google Scholar 

  • Rodil, R., & Popp, P. (2006). Development of pressurized subcritical water extraction combined with stir bar sorptive extraction for the analysis of organochlorine pesticides and chlorobenzenes in soils. Journal of Chromatography. A, 1124(1–2), 82–90.

    Article  CAS  Google Scholar 

  • Sharom, M. S., Miles, J. R. W., Harris, C. R., & McEwen, F. L. (1980). Behaviour of 12 insecticides in soil and aqueous suspensions of soil and sediment. Water Research, 14(8), 1095–1100.

    Article  CAS  Google Scholar 

  • Smith, E., Smith, J., Naidu, R., & Juhasz, A. L. (2004). Desorption of DDT from a contaminated soil using cosolvent and surfactant washing in batch experiments. Water, Air, and Soil Pollution, 151(1–4), 71–86.

    Article  CAS  Google Scholar 

  • Snyder, J. L., Grob, R. L., McNally, M. E., & Oostdyk, T. S. (1992). Comparison of supercritical fluid extraction with classical sonication and Soxhlet extractions for selected pesticides. Analytical Chemistry, 64(17), 1940–1946.

    Article  CAS  Google Scholar 

  • Sun, J., Liu, J., Tu, W., & Xu, C. (2010). Separation and aquatic toxicity of enantiomers of the organophosphorus insecticide O-ethyl O-4-nitrophenyl phenylphosphonothioate (EPN). Chemosphere, 81(10), 1308–1313.

    Article  CAS  Google Scholar 

  • Wang, W., Meng, B., Lu, X., Liu, Y., & Tao, S. (2007). Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils: a comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques. Analytica Chimica Acta, 602(2), 211–222.

    Article  CAS  Google Scholar 

  • WHO. (2009). Data sheets on pesticides, World Health Organization. http://www.inchem.org. Accessed 14 Feb 2013.

  • Wiboonsirikul, J., & Adachi, S. (2008). Extraction of functional substances from agricultural products or by-products by subcritical water treatment. Food Science and Technology Research, 14(4), 319.

    Article  CAS  Google Scholar 

  • Wu, C., & Linden, K. G. (2008). Degradation and byproduct formation of parathion in aqueous solutions by UV and UV/H2O2 treatment. Water Research, 42(19), 4780–4790.

    Article  CAS  Google Scholar 

  • Yak, H. K., Mincher, B. J., Chiu, K.-H., & Wai, C. M. (1999). Supercritical fluid extraction/γ-radiolysis of PCBs from contaminated soil. Journal of Hazardous Materials, 69(2), 209–216.

    Article  CAS  Google Scholar 

  • Yang, Y., & Hildebrand, F. (2006). Phenanthrene degradation in subcritical water. Analytica Chimica Acta, 555(2), 364–369.

    Article  CAS  Google Scholar 

  • Yang, Y., Bowadt, S., Hawthorne, S. B., & Miller, D. J. (1995). Subcritical water extraction of polychlorinated biphenyls from soil and sediment. Analytical Chemistry, 67(24), 4571–4576.

    Article  CAS  Google Scholar 

  • Ye, M., Yang, X.-L., Sun, M.-M., Bian, Y.-R., Wang, F., Gu, C.-G., et al. (2013). Use of organic solvents to extract organochlorine pesticides (OCPs) from aged contaminated soils. Pedosphere, 23(1), 10–19.

    Article  CAS  Google Scholar 

  • Zhou, W., & Zhu, L. (2008). Enhanced soil flushing of phenanthrene by anionic–nonionic mixed surfactant. Water Research, 42(1–2), 101–108.

    Article  CAS  Google Scholar 

  • Zhou, Q., Sun, X., Gao, R., & Hu, J. (2011). Mechanism and kinetic properties for OH-initiated atmospheric degradation of the organophosphorus pesticide diazinon. Atmospheric Environment, 45(18), 3141–3148.

    Article  CAS  Google Scholar 

  • Zhu, Z.-Q., Yang, X.-E., Wang, K., Huang, H.-G., Zhang, X., Fang, H., et al. (2012). Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes. Journal of Hazardous Materials, 235–236, 144–151.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this research is gratefully acknowledged from Korea Environmental Industry and Technology Institute (KEITI) through the GAIA project (Grant No. 173-101-033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Hun Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, M.N., Jo, YT., Jung, SK. et al. Evaluation of Subcritical Water Extraction Process for Remediation of Pesticide-Contaminated Soil. Water Air Soil Pollut 224, 1652 (2013). https://doi.org/10.1007/s11270-013-1652-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1652-8

Keywords

Navigation