Skip to main content
Log in

Surfactant-Enhanced Removal of Cu (II) and Zn (II) from a Contaminated Sandy Soil

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Batch tests were conducted to know the effectiveness of using surfactants only and surfactants with a complexing agent to remove Cu (II) and Zn (II) from an artificially contaminated sandy soil. SDS (sodium dodecyl sulfate), AOT (alpha-olefin sulfonate) and Tx-100 (Triton X-100) were the surfactants selected as the washing liquids. Complexing agent EDTA (ethylenediaminetetraacetic acid) was also selected for washing the soil. To avoid external factors from interfering with the cleaning process, artificial soil formed by a mixture of clean sand and bentonite was used to form contaminated soil samples. The amount of organic matter present was insignificant. Compared to extraction by distilled water, tests indicated that a six-fold increase in copper extraction occurred due to the presence of surfactants and/or the complexing agent EDTA. Compared to extraction by distilled water, zinc extraction by surfactants and or the complexing agent EDTA was nearly 1.2 to 1.3 times more. Effects of competition as well as interference associated with the adsorption and desorption of these metals are also very briefly reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdul, A. S., & Gibson, T. L. (1991). Laboratory studies of surfactant-enhanced washing of polychlorinated biphenyl from sandy material. Environmental Science & Technology, 25(4), 665–671.

    Article  CAS  Google Scholar 

  • Ahmadi, S., Huang, Y. C., Batchelor, B., & Koseoglu, S. (1995). Binding of heavy metals to derivatives of cholesterol and sodium dodecyl sulfate. Journal of Environmental Engineering ASCE, 121(9), 645–652.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1990). Heavy metals in soils. New York: Wiley.

    Google Scholar 

  • Benjamine, M. M., & Leckie, J. O. (1981). Competitive adsorption of Cd, Cu, Zn and Pb on the amorphous iron oxyhydroxide. Journal of Colloid and Interface Science, 83, 410–419.

    Article  Google Scholar 

  • Bourbonais, K. A., Compeau, G. C., & MacCellan, L. K. (1995). Evaluating effectiveness of in situ soil flushing. In R. C. Knox, & J. H. Harwell (Eds.), Surfactant-enhanced subsurface remediation (pp. 161–176). ACS symposium series 594.

  • Cameron, R. E. (1992). Guide to site and soil description for hazardous waste site characterization (1): Metals, EPA report 600/4–91/029.

  • Chiou, C. T., & Rutherford, D. W. (1993). Sorption of N2 and EGME vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data. Environmental Science & Technology, 27, 1587–1594.

    Article  CAS  Google Scholar 

  • Christophi, C. A., & Axe, L. (2000). Competition of Cd, Cu, and Pb adsorption on goethite. Journal of Environmental Engineering ASCE, 154(1), 245–267.

    Google Scholar 

  • Cline, S. R., & Reed, B. R. (1995). Lead removal from soils via bench-scale soil washing techniques. Journal of Environmental Engineering ASCE, 121(10), 700–705.

    Article  CAS  Google Scholar 

  • Daniels, J. L., Inyang, H. I., & Chien, C. C. (2004). Verification of contaminant sorption by soil–Bentonite barrier materials using electron scanning microscopy/energy dispersive x-ray spectrometry. Journal of Environmental Engineering ASCE, 120(8), 910–917.

    Article  CAS  Google Scholar 

  • Davis, A. P., & Hotha, B. (1998). Washing of various lead compounds from a contaminated soil column. Journal of Environmental Engineering ASCE, 124(11), 1066–1075.

    Article  CAS  Google Scholar 

  • Davis, A. P., & Singh, I. (1995). Washing of Zinc (II) from a contaminated column. Journal of Environmental Engineering ASCE, 121(2), 174–185.

    Article  CAS  Google Scholar 

  • Deshpande, S., Shiau, B. J., Wade, D., Sabatini, A. D., & Harwell, J. H. (1999). Surfactant selection for enhancing ex situ soil washing. Water Research, 33(2), 351–360.

    Article  CAS  Google Scholar 

  • Deuren, J. V., Lloyd, T., Chetry, S., Liou, R., & Pec, J. (2002). Remediation technologies screening matrix and reference guide, 4th edn. (http://www.frtr.gov/matrix2/section4/4-3.html).

  • Doong, R., Lei, W. G., Chen, T. F., Lee, C. Y., Chen, J. H., & Chang, W. H. (1996). Effect of anionic and nonionic surfactants on sorption and micellar solubilization of monocyclic aromatic compounds. Water Science and Technology, 34(7–8), 327–334.

    Article  CAS  Google Scholar 

  • Doong, R., WU, H. A., & Lei, W. G. (1998). Surfactant enhanced remediation of cadmium contaminated soils. Water Science and Technology, 37(8), 65–71.

    Article  CAS  Google Scholar 

  • Duffield, A. R., Ramamurthy, A. S., & Campanelli, J. R. (2003). Surfactant enhanced mobilization of mineral oil with porous media. Water, Air and Soil Pollution, 143(3), 111–122.

    Article  CAS  Google Scholar 

  • Edward, D. A., Adeel, Z., & Luthy, R. G. (1994). ‘Distribution of nonionic surfactant and phenanthrene in a sediment/aqueous system. Environmental Science & Technology, 28, 1550–1560.

    Article  Google Scholar 

  • Eliot, H. A., & Brown, G. A. (1989). Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils. Water, Air and soil pollution, 45, 361–369.

    Google Scholar 

  • Ellis, W. d., Fogg, T. R., & Tafuri, A. N. (1986). Treatment of soils contaminated with heavy metals, land disposal, remedial action. Incineration and treatment of hazardous waste, 12th Annual. Rsch. Symposium, EPA 600/9–86/022, (Cincinnati), 201–207.

  • Evanko, C. R., & Davia, A. D. (1997). Remediation of metal-contaminated soils and groundwater. Report of Ground water remediation technologies analysis center.

  • Gadde, R., & Laitinen, H. A. (1974). Studies of heavy metal adsorption by hydrous iron and manganese oxides. Analytical Chemistry, 46, 2022–2026.

    Article  CAS  Google Scholar 

  • Gadelle, F., Wan, J., & Tokunaga, T. K. (2001). Removal of uranium (VI) from contaminated sediments by surfactants. Journal of environmental quality, 30, 470–478.

    CAS  Google Scholar 

  • Harwell, J. H. (1992). Factors affecting surfactant performance in ground water remediation application. In D. A. Sabatini, & R. C. Knox (Eds.), Transport and remediation of subsurface contaminants (pp. 124–132). ACS Symposium series 491, Washington, DC.

  • Hong, A., Chen, T. C., & Okey, R. W. (1995). Chelating extraction of lead and copper from soil with S-carboxymethylcysteine. Water Environment Research, 67, 971–979.

    Article  CAS  Google Scholar 

  • Huang, C., Van Benschoten, T. C., Healy, T. C., & Ryan, M. E. (1997). Feasibility study of surfactant use for remediation of organic and metal contaminated soils. Journal of Soil Contamination, 6(5), 537–556.

    CAS  Google Scholar 

  • Li, X. (2004). Surfactant enhanced washing of Cu (II) and Zn (II) from a contaminated sandy soil. MASc thesis, Building, Civil and Env. Engg. Dept, Concordia Univ., Montreal, Canada.

  • Mohammad, A., & Jabeen, N. (2003). TLC studies and separation of heavy metal cation on soil amend silica gel layers developed with surfactant-mediated solvent systems. Indian Journal of Chemical Technology, 10, 79–86.

    CAS  Google Scholar 

  • Mukerjee, P., & Mysels, K. J. (1971). Critical micelle concentrations of aqueous surfactant systems. National standard data series, 36. National Bureau of Standards, Washington, DC.

  • Peters, R. W. (1999). ‘Chelate extraction of heavy metals from contamination soils. Journal of Hazardous Materials’, 66(1–2), 151–210.

    Article  CAS  Google Scholar 

  • Reed, B. E., Carriere, P. C., & Moore, R. (1996). Flushing of a Pb (II) contaminated soil using HCl, EDTA, and CaCl’2. Journal of Environmental Engineering, ASCE, 122(1), 48–50.

    Article  CAS  Google Scholar 

  • Sigma (1993). Sigma information sheet. www.sigmaaldrich.com/cgibin/hsrun/Suite7/Suite/HAHT.

  • Temminghoff, E. J. M., Van Der Zec, S. E. A. T. M., & Keizer, M. G. (1994). The influence of pH on the desorption and speciation of copper in a sandy soil. Soil Science, 158(6, 3), 398–408.

    Article  CAS  Google Scholar 

  • Wilson, D. J., & Clarke, A. N. (1994) Soil surfactant flushing/washing. In D. J. Wilson, & A. N. Clarke (Eds.), Hazardous waste site soil remediation: Innovative technologies. Marcel Dekker, USA.

  • Wu, J., Laird, D. A., & Thompson, M. L. (1999). Sorption and desorption of copper on soil clay components. Journal of Environmental Quality, 28(1), 334–338.

    Article  CAS  Google Scholar 

  • Zhang, W., & Lo, I. M. C. (2006). EDTA-enhanced washing for remediation of Pb-and/or Zn-contaminated soils. Journal of Environmental Engineering ASCE, 133(5), 548–555.

    Article  CAS  Google Scholar 

  • Zhang, W., & Lo, I. M. C. (2007). Chemical-enhanced washing for remediation of soils contaminated with marine diesel fuel in the presence/absence of Pb. Journal of Environmental Engineering ASCE, 133(5), 548–555.

    Article  CAS  Google Scholar 

  • Zasoski, R. J., & Burau, R. G. (1988). Sorption and sorptive interactions of cadmium and zinc on hydrous manganese oxide. Soil Science Society of America Journal, 52, 81–87.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ramamurthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramamurthy, A.S., Vo, D., Li, X.J. et al. Surfactant-Enhanced Removal of Cu (II) and Zn (II) from a Contaminated Sandy Soil. Water Air Soil Pollut 190, 197–207 (2008). https://doi.org/10.1007/s11270-007-9592-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9592-9

Keywords

Navigation