Skip to main content

Advertisement

Log in

Biogeochemical Fractions of Mercury in Soil Profiles of Two Different Floodplain Ecosystems in Germany

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A special sequential extraction (SE) procedure for mercury (Hg) was conducted to determine biogeochemical fractions of Hg and their controlling factors in four contaminated soil profiles located in two distinct floodplain ecosystems which differ in their industrial histories and thus in their Hg loads. The first study area is located at the Wupper River (Western Germany) and the soil profiles reveal sum of Hg (Hgsum) concentrations up to 48 ppm. The second study area is located at the Saale River (Eastern Germany) and the soil profiles have Hgsum concentrations up to 4.3 ppm. The majority of Hg was found in fraction IV (FIV, Hg0) for both study areas, indicating its anthropogenic origin. Moreover, we have detected Hg in fraction V (FV) and in fraction III (FIII). As Hg in FV is mostly associated with Hg sulfides being formed under reducing conditions, it indicates reduction processes which usually occurred during flooding. Mercury in FIII (organo-chelated Hg) exhibits a moderate mobility and a high methylation potential. Between Hg in FIII and hot-water-extractable carbon (CHWE) as a measure of easy degradable, labile soil organic matter, we found a significant correlation. Sum of Hg seem to have a high affinity to organic carbon (Corg). The concentrations of Hg in the mobile and exchangeable fractions FI and FII were low. Moreover, the significant positive correlation between iron (Fe) and Hg in FIV indicate an interaction between Hg and Fe. The majority of the Hg in our soils is considered to be relatively immobile. However, since the formation of more mobile Hg species via oxidation or methylation might occur in floodplain soils, the low Hg concentrations in mobile fractions should not be underestimated due to their high mobility and potential plant availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ad-hoc Arbeitsgruppe Boden (2005). Bodenkundliche Kartieranleitung. Stuttgart: E. Schweitzer-bart’sche Verlagsbuchhandlung.

  • Adisa, S. J., & Nortcliff, S. (2011). Carbon fractions associated with silt-size particles in surface and subsurface soil horizons. Soil Science Society of America Journal, 75(1), 79–91.

    Article  CAS  Google Scholar 

  • Ahn, M. Y., Zimmerman, A. R., Comerford, N. B., Sickman, J. O., & Grunwald, S. (2009). Carbon mineralization and labile organic carbon pools in the sandy soils of a North Florida watershed. Ecosystems, 12(4), 672–685.

    Article  CAS  Google Scholar 

  • Ainza, C., Trevors, J., & Saier, M. (2008). Environmental mercury rising. Water, Air, and Soil Pollution, 205(S1), 47–48.

    Article  Google Scholar 

  • Balaria, A., Johnson, C. E., & Xu, Z. H. (2009). Molecular-scale characterization of hot-water-extractable organic matter in organic horizons of a forest soil. Soil Science Society of America Journal, 73(3), 812–821.

    Article  CAS  Google Scholar 

  • Banfalvi, G. (2011). Cellular effects of heavy metals. Berlin: Springer.

  • Bloom, N. S., Preus, E., Katon, J., & Hiltner, M. (2003). Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Analytica Chimica Acta, 479(2), 233–248.

    Article  CAS  Google Scholar 

  • Blume, H.-P., Deller, B., Leschber, R., Paetz, A., Schmidt, S. K., & Wilke, B.-M. (2000). Handbuch der Bodenuntersuchung Und Ergänzungslieferungen Bd. 1 bis 7. DIN Vorschriften. Berlin: Wiley-VCH Beuth.

    Google Scholar 

  • Blume, H.-P., Stahr, K., & Leinweber, P. (2011). Bodenkundliches Praktikum. Heidelberg: Spektrum.

    Book  Google Scholar 

  • Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 40(12), 1335–1351.

    Article  CAS  Google Scholar 

  • Borggaard, O. K. (1983). Effect of surface-area and mineralogy of iron-oxides on their surface-charge and anion-adsorption properties. Clays and Clay Minerals, 31(3), 230–232.

    Article  CAS  Google Scholar 

  • Boszke, L., Kowalski, A., Astel, A., Baranski, A., Gworek, B., & Siepak, J. (2008). Mercury mobility and bioavailability in soil from contaminated area. Environmental Geology, 55(5), 1075–1087.

    Article  CAS  Google Scholar 

  • Breulmann, M., Schulz, E., Weißhuhn, K., & Buscot, F. (2011). Impact of the plant community composition on labile soil organic carbon, soil microbial activity and community structure in semi-natural grassland ecosystems of different productivity. Plant and Soil, 352, 253–265.

    Article  Google Scholar 

  • Bundesbodenschutzverordnung (1999). Directive of the execution of the federal protection act (Federal soil protection and hazardous waste directive—BBodSchV). Bundesgesetzblatt, pp.1554–1582.

  • Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: structure, properties, reactions, occurrences and uses (2nd, completely revised and extended edition). Weinheim: Wiley-VCH.

    Google Scholar 

  • Coufalík, P., Červenka, R., & Komárek, J. (2011). Mercury speciation in soil in vicinity of coal beds using sequential extraction. Environmental Earth Sciences, 62(2), 421–427.

    Article  Google Scholar 

  • Covelli, S., Emili, A., Acquavita, A., Koron, N., & Faganeli, J. (2011). Benthic biogeochemical cycling of mercury in two contaminated northern Adriatic coastal lagoons. Continental Shelf Research, 31(16), 1777–1789.

    Article  Google Scholar 

  • Daniels, A. (1808). Vollständige Beschreibung der Schwert-, Messer- und übrigen Stahlfabriken zu Solingen im Herzogthum Berg. Düsseldorf: Schreiner.

    Google Scholar 

  • Davis, A., Bloom, N. S., & Hee, S. S. Q. (1997). The environmental geochemistry and bioaccessibility of mercury in soils and sediments: a review. Risk Analysis, 17(5), 557–569.

    Article  CAS  Google Scholar 

  • Dehner, U., Feldhaus, D., & Villwock, G. (2000). Zur Kennzeichnung von Schwermetall-Hintergrundgehalten in Auenböden in den Flußsystemen der Saale und mittleren Elbe. In K. Friese, B. Witter, G. Miehlich, & M. Rode (Eds.), Stoffhaushalt von Auenökosystemen (pp. 227–236). Berlin: Springer.

    Chapter  Google Scholar 

  • Deutscher Wetterdienst (2011). Wetter und Klima - Deutscher Wetterdienst - Klimadaten. www.dwd.de.

  • Devai, I., Patrick, W. H., Neue, H. U., DeLaune, R. D., Kongchum, M., & Rinklebe, J. (2005). Methyl mercury and heavy metal content in soils of rivers Saale and Elbe (Germany). Analytical Letters, 38(6), 1037–1048.

    Article  CAS  Google Scholar 

  • Dietz, W. (1957). Die Wuppertaler Garnnahrung : Geschichte der Industrie und des Handels von Elberfeld und Barmen 1400 bis 1800 (Bergische Forschungen, Vol. Bd 4). Neustadt a.d. Aisch: Schmidt.

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Science of the Total Environment, 407(13), 3972–3985.

    Article  Google Scholar 

  • Fernandez-Martinez, R., Loredo, J., Ordonez, A., & Rucandio, M. I. (2006). Physicochemical characterization and mercury speciation of particle-size soil fractions from an abandoned mining area in Mieres, Asturias (Spain). Environmental Pollution, 142(2), 217–226.

    Article  CAS  Google Scholar 

  • Feyte, S., Tessier, A., Gobeil, C., & Cossa, D. (2010). In situ adsorption of mercury, methylmercury and other elements by iron oxyhydroxides and organic matter in lake sediments. Applied Geochemistry, 25(7), 984–995.

    Article  CAS  Google Scholar 

  • Fiedler, S., & Sommer, M. (2004). Water and redox conditions in wetland soils—their influence on pedogenic oxides and morphology. Soil Science Society of America Journal, 68(1), 326–335.

    Article  CAS  Google Scholar 

  • Fiorentino, J. C., Enzweiler, J., & Angelica, R. S. (2011). Geochemistry of mercury along a soil profile compared to other elements and to the parental rock: evidence of external input. Water, Air, and Soil Pollution, 221(1–4), 63–75.

    Article  CAS  Google Scholar 

  • Fischer, E. (1996). 100 years of industrial alkali chloride electrolysis in Bitterfeld Wolfen—an important centre of the chemical industry. Chemische Technik, 48(1), 43–52.

    CAS  Google Scholar 

  • Frierdich, A. J., & Catalano, J. G. (2012). Distribution and speciation of trace elements in iron and manganese oxide cave deposits. Geochimica et Cosmochimica Acta, 91, 240–253.

    Article  CAS  Google Scholar 

  • Frohne, T., Rinklebe, J., Langer, U., Du Laing, G., Mothes, S., & Wennrich, R. (2012). Biogeochemical factors affecting mercury methylation rate in two contaminated floodplain soils. Biogeosciences, 9(1), 493–507.

    Article  CAS  Google Scholar 

  • Gabriel, M. C., & Williamson, D. G. (2004). Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environmental Geochemistry and Health, 26(4), 421–434.

    Article  CAS  Google Scholar 

  • Gaida, R., & Radtke, U. (1990). Schwermetalle in den Auensedimenten der Wupper. Decheniana-Beihefte: Verhandlungen d. Naturhistorischen Vereins der Rheinlande und Westfalens, 143, 434–445.

    Google Scholar 

  • Harris-Hellal, J., Grimaldi, M., Garnier-Zarli, E., & Bousserrhine, N. (2011). Mercury mobilization by chemical and microbial iron oxide reduction in soils of French Guyana. Biogeochemistry, 103(1–3), 223–234.

    Article  CAS  Google Scholar 

  • Hill, J. R., O'Driscoll, N. J., & Lean, D. R. (2009). Size distribution of methylmercury associated with particulate and dissolved organic matter in freshwaters. The Science of the Total Environment, 408(2), 408–414.

    Article  CAS  Google Scholar 

  • Hintelmann, H., & Wilken, R. (1995). Levels of total mercury and methylmercury compounds in sediments of the polluted Elbe River: influence of seasonally and spatially varying environmental factors. The Science of the Total Environment, 166(1–3), 1–10.

    Article  CAS  Google Scholar 

  • IUSS-FAO (Ed.) (2006). World reference base for soil resources (vol. 103, World Soil Resources Reports). Rome: FAO.

    Google Scholar 

  • Jiskra, M., Wiederhold, J. G., Bourdon, B., & Kretzschmar, R. (2012). Solution speciation controls mercury isotope fractionation of Hg(II) sorption to goethite. Environmental Science and Technology, 46(12), 6654–6662.

    Article  CAS  Google Scholar 

  • Jokic, A., Cutler, J. N., Ponomarenko, E., van der Kamp, G., & Anderson, D. W. (2003). Organic carbon and sulphur compounds in wetland soils: insights on structure and transformation processes using K-edge XANES and NMR spectroscopy. Geochimica et Cosmochimica Acta, 67(14), 2585–2597.

    Article  CAS  Google Scholar 

  • Kaplan, D. I., Knox, A. S., & Myers, J. (2002). Mercury geochemistry in wetland and its implications for in situ remediation. Journal of Environmental Engineering, 128(8), 723–732.

    Article  CAS  Google Scholar 

  • Khwaja, A. R., Bloom, P. R., & Brezonik, P. L. (2006). Binding constants of divalent mercury (Hg2+) in soil humic acids and soil organic matter. Environmental Science and Technology, 40(3), 844–849.

    Article  CAS  Google Scholar 

  • Kocman, D., Horvat, M., & Kotnik, J. (2004). Mercury fractionation in contaminated soils from the Idrija mercury mine region. Journal of Environmental Monitoring, 6, 696–703.

    Article  CAS  Google Scholar 

  • Lacombe, J., Macke, K., & Gellert, G. (2000). Die Wupper - Vom „Schwarzen Fluss“ zum Lachsgewässer? Gewässergütebericht 2000–30 Jahre Biologische Gewässerüberwachung in Nordrhein-Westfalen (pp. 91–100). Essen: Landesumweltamt Nordrhein-Westfalen (LANUV NRW).

  • Landgraf, D., Leinweber, P., & Makeschin, F. (2006). Cold and hot water-extractable organic matter as indicators of litter decomposition in forest soils. Journal of Plant Nutrition and Soil Science, 169(1), 76–82.

    Article  CAS  Google Scholar 

  • Langer, U., & Rinklebe, J. (2009). Lipid biomarkers for assessment of microbial communities in floodplain soils of the Elbe River (Germany). Wetlands, 29(1), 353–362.

    Article  Google Scholar 

  • Leinweber, P., Schulten, H. R., & Korschens, M. (1995). Hot water extracted organic matter: chemical composition and temporal variations in a long-term field experiment. Biology and Fertility of Soils, 20(1), 17–23.

    Article  CAS  Google Scholar 

  • Liu, G. L., Cabrera, J., Allen, M., & Cai, Y. (2006). Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method. The Science of the Total Environment, 369(1–3), 384–392.

    Article  CAS  Google Scholar 

  • Manohar, D. M., Krishnan, K. A., & Anirudhan, T. S. (2002). Removal of mercury(II) from aqueous solutions and chlor-alkali industry wastewater using 2-mercaptobenzimidazole–clay. Water Research, 36(6), 1609–1619.

    Article  CAS  Google Scholar 

  • Mehra, O. P., & Jackson, M. L. (1960). Iron removal from soils and clays by a dithionite–citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317–327.

    Article  Google Scholar 

  • Munsell, A. H. (2000). Munsell soil color charts. Baltimore: Grand Rapids.

  • Overesch, M., Rinklebe, J., Broll, G., & Neue, H. U. (2007). Metals and arsenic in soils and corresponding vegetation at Central Elbe river floodplains (Germany). Environmental Pollution, 145(3), 800–812.

    Article  CAS  Google Scholar 

  • Pereira, E., Vale, C., Tavares, C. F., Valega, M., & Duarte, A. C. (2005). Mercury in plants from fields surrounding a contaminated Channel of Ria de Aveiro, Portugal. Soil and Sediment Contamination, 14(6), 571–577.

    Article  CAS  Google Scholar 

  • Prange, A., Furrer, R., & Einax, J. W. (2000). Die Elbe und ihre Nebenflüsse-Belastung, Trends, Bewertung, Perspektiven. Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V. (ATV-DVWK).

  • Ramasamy, E. V., Toms, A., Shylesh, C. M., Jayasooryan, K. K., & Mahesh, M. (2012). Mercury fractionation in the sediments of Vembanad wetland, west coast of India. Environmental Geochemistry and Health, 34(5), 575–586.

    Article  CAS  Google Scholar 

  • Rao, C. R. M., Sahuquillo, A., & Sanchez, J. F. L. (2008). A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water, Air, and Soil Pollution, 189(1–4), 291–333.

    Article  CAS  Google Scholar 

  • Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter—a review. Chemosphere, 55(3), 319–331.

    Article  CAS  Google Scholar 

  • Reis, A. T., Rodrigues, S. M., Davidson, C. M., Pereira, E., & Duarte, A. C. (2010). Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere, 81(11), 1369–1377.

    Article  CAS  Google Scholar 

  • Rinklebe, J. (2004). Differenzierung von Auenböden der Mittleren Elbe und Quantifizierung des Einflusses von deren Bodenkennwerten auf die mikrobielle Biomasse und die Bodenenzymaktivitäten von β-Glucosidase, Protease und alkalischer Phosphatase. PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Germany, Halle.

  • Rinklebe, J., Heinrich, K., & Neue, H.-U. (2000a). Auenböden im Biosphärenreservat Mittlere Elbe - ihre Klassifikation und Eigenschaften. In K. Friese, B. Witter, G. Miehlich, & M. Rode (Eds.), Stoffhaushalt von Auenökosystemen (pp. 37–46). Berlin: Springer.

    Chapter  Google Scholar 

  • Rinklebe, J., Marahrens, S., Böhnke, R., Amarell, U., & Neue, H.-U. (2000b). Großmaßstäbige bodenkundliche Kartierung im Biosphärenreservat Mittlere Elbe. In K. Friese, B. Witter, G. Miehlich, & M. Rode (Eds.), Stoffhaushalt von Auenökosystemen (pp. 27–35). Berlin: Springer.

    Chapter  Google Scholar 

  • Rinklebe, J., Heinrich, K., & Neue, H.-U. (2001). Der umsetzbare Kohlenstoff als Indikator für die potentielle bodenmikrobielle Aktivität in Auenböden. In M. Scholz, S. Stab, & K. Henle (Eds.), Projektbereich Naturnahe Landschaften und Ländliche Räume (Vol. UFZ-Bericht Nr. 8/2001, pp. 74–83).

  • Rinklebe, J., Franke, C., & Neue, H. (2007). Aggregation of floodplain soils based on classification principles to predict concentrations of nutrients and pollutants. Geoderma, 141(3–4), 210–223.

    Article  CAS  Google Scholar 

  • Rinklebe, J., During, A., Overesch, M., Wennrich, R., Stärk, H.-J., Mothes, S., et al. (2009). Optimization of a simple field method to determine mercury volatilization from soils—examples of 13 sites in floodplain ecosystems at the Elbe River (Germany). Ecological Engineering, 35(2), 319–328.

    Article  Google Scholar 

  • Rinklebe, J., During, A., Overesch, M., Du Laing, G., Wennrich, R., Stark, H. J., et al. (2010). Dynamics of mercury fluxes and their controlling factors in large Hg-polluted floodplain areas. Environmental Pollution, 158(1), 308–318.

    Article  CAS  Google Scholar 

  • Schenk, R. (1994). Verteilung und Dynamik von Schwermetallen in Sedimenten der Wupper. PhD thesis, Heinrich-Heine Universität Düsseldorf.

  • Schulz, E., Deller, B., & Hoffmann, G. (2003). Heißwasserextrahierbarer Kohlenstoff und Stickstoff. In VDLUFA (Ed.), Die Untersuchung von Böden - Methodenbuch (Vol. I. 4. Teillfg). Bonn: VDLUFA.

    Google Scholar 

  • Schulz, E., Breulmann, M., Boettger, T., Wang, K. R., & Neue, H. U. (2011). Effect of organic matter input on functional pools of soil organic carbon in a long-term double rice crop experiment in China. European Journal of Soil Science, 62(1), 134–143.

    Article  CAS  Google Scholar 

  • Schulz-Zunkel, C., & Krueger, F. (2009). Trace metal dynamics in floodplain soils of the River Elbe: a review. Journal of Environmental Quality, 38(4), 1349–1362.

    Article  CAS  Google Scholar 

  • Schwertmann, U. (1964). Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung Zeitschrift für Pflanzenernährung und Bodenkunde. Former: Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde, 105, 194–202.

    Article  CAS  Google Scholar 

  • Schwertmann, U. (1966). Inhibitory effect of soil organic matter on crystallization of amorphous ferric hydroxide. Nature, 212(5062), 645–646.

    Article  CAS  Google Scholar 

  • Shi, J. B., Liang, L. N., Jiang, G. B., & Jin, X. L. (2005). The speciation and bioavailability of mercury in sediments of Haihe River, China. Environment International, 31(3), 357–365.

    Article  CAS  Google Scholar 

  • Skyllberg, U. (2010). Mercury biogeochemistry in soils and sediments. Developments in Soil Science, 34, 379–410.

    Article  CAS  Google Scholar 

  • Skyllberg, U., Qian, J., Frech, W., Xia, K., & Bleam, W. F. (2003). Distribution of mercury, methyl mercury and organic sulphur species in soil, soil solution and stream of a boreal forest catchment. Biogeochemistry, 64(1), 53–76.

    Article  CAS  Google Scholar 

  • Swaton, T., Rinklebe, J., Tanneberg, H., & Jahn, R. (2003). Verteilungsmuster von Quecksilber und Zink in Auenböden des Saale-Elbe-Winkels. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 102(2), 593–594.

    Google Scholar 

  • Takahashi, T., Shozugawa, K., & Matsuo, M. (2009). Contribution of amorphous iron compounds to adsorptions of pentavalent antimony by soils. Water, Air, and Soil Pollution, 208(1–4), 165–172.

    Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Ullrich, S. M., Tanton, T. W., & Abdrashitova, S. A. (2001). Mercury in the aquatic environment: a review of factors affecting methylation. Critical Reviews in Environmental Science and Technology, 31(3), 241–293.

    Article  CAS  Google Scholar 

  • Wallschlager, D., Desai, M. V. M., & Wilken, R. D. (1996). The role of humic substances in the aqueous mobilization of mercury from contaminated floodplain soils. Water, Air, and Soil Pollution, 90(3–4), 507–520.

    Article  Google Scholar 

  • Wallschlager, D., Desai, M. V. M., Spengler, M., & Wilken, R. D. (1998). Mercury speciation in floodplain soils and sediments along a contaminated river transect. Journal of Environmental Quality, 27(5), 1034–1044.

    Article  CAS  Google Scholar 

  • Wang, Q. K., & Wang, S. L. (2011). Response of labile soil organic matter to changes in forest vegetation in subtropical regions. Applied Soil Ecology, 47(3), 210–216.

    Article  Google Scholar 

  • Wang, J., Feng, X., Anderson, C. W., Xing, Y., & Shang, L. (2012). Remediation of mercury contaminated sites—a review. Journal of Hazardous Materials, 221–222, 1–18.

    Google Scholar 

  • Wichern, M., Kehl, O., Erbe, V., Luebken, M., & Wilderer, P. A. (2006). Modelling COD and N removal in the water and in the benthic biofilm for the River Wupper in Germany. Water Science and Technology, 53(10), 163–171.

    Article  CAS  Google Scholar 

  • Wupperverband (2011). FluGGS: FlussgebietsGeoinformationsSystem der Wupperverbandes. http://fluggs.wupperverband.de/internet/initParams.do.

  • Zerling, L., Hanisch, C., Junge, F. W., & Muller, A. (2004). Heavy metals in Saale sediments—changes in the contamination since 1991. Acta Hydrochimica et Hydrobiologica, 31(4–5), 368–377.

    Google Scholar 

  • Zhong, H., & Wang, W. X. (2008). Effects of sediment composition on inorganic mercury partitioning, speciation and bioavailability in oxic surficial sediments. Environmental Pollution, 151(1), 222–230.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. E. Schulz and Mrs. G. Henning for the determination of CHWE, Mrs. A. During, Mr. T. Swaton, and Mr. S. Czickus for their technical assistance and the land owners for their support.. Furthermore, we thank Mr. T. Labatzke and Mr. A. Becker (Analytik Jena AG) for their advices concerning mercury analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Rinklebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frohne, T., Rinklebe, J. Biogeochemical Fractions of Mercury in Soil Profiles of Two Different Floodplain Ecosystems in Germany. Water Air Soil Pollut 224, 1591 (2013). https://doi.org/10.1007/s11270-013-1591-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1591-4

Keywords

Navigation