Skip to main content
Log in

Anaerobic Degradation of Protein: Simplified Kinetic Modelling and Microbial Dynamics

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Data on the influence of substrate composition on the anaerobic degradation of peptone in a bench-scale packed-bed reactor are presented and discussed. The experiments were conducted in a horizontal-flow anaerobic immobilised biomass reactor operated with a hydraulic detention time of 4 h. Peptone was the sole carbon source in the first experiment (E1). In the second experiment (E2), the reactor was fed with peptone and carbohydrates, and in the third experiment (E3), lipids were also added. At end of each experiment, the samples were collected to obtain spatial profiles of the substrates and intermediary metabolites. A modified first-order kinetic expression fits well with the chemical oxygen demand data, allowing kinetic parameter inference in both E1 and E2. The presence of lipids in the E3 influent clearly disturbed the equilibrium of the process, which could be better represented by two first-order kinetic expressions in series. A kinetic model of irreversible first-order reactions (in series and in parallel) with two intermediate products was proposed for representing the entire process. Several modifications of the metabolic routes were clearly represented by the values of the model parameters. It was also possible to conclude that the adsorption of lipids in the fixed bed caused a decrease in the consumption rate of proteins and acetate. Microscopy examinations and fluorescence in situ hybridisation analyses corroborated the conclusions from the kinetic study. The frequencies of the microorganisms changed as the substrate composition was modified, indicating the capability of the microorganisms to adapt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amann, R. I., Binder, B. G., Olson, R. J., Chrisholm, S. W., Devereux, R., & Stahl, D. A. (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analysing mixed microbial populations. Applied and Environmental Microbiology, 56(6), 1919–1925.

    CAS  Google Scholar 

  • APHA. (1988). Standard methods for examination of water and wastewater (20th ed.). Washington: American Public Health Association.

    Google Scholar 

  • Batstone, D. J., Keller, J., Angelidaki, R. I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., et al. (2002). Anaerobic digestion model no. 1. STR no. 13. London: IWA.

    Google Scholar 

  • Borja, R., Martín, A., Sánchez, E., Rincón, B., & Raposo, F. (2005). Kinetic modelling of the hydrolysis, acidogenic and methanogenic steps in the anaerobic digestion of two-phase olive pomace (TPOP). Process Biochemistry, 40(5), 1841–1847.

    Article  CAS  Google Scholar 

  • Breure, A. M., Mooijman, K. A., & van Andel, J. G. (1986). Protein degradation in anaerobic digestion: influence of volatile fatty acids and carbohydrates on hydrolysis and acidogenic fermentation of gelatin. Applied Microbiology and Biotechnology, 24(5), 426–431.

    Article  CAS  Google Scholar 

  • Cattony, E. B. M., Chinalia, F. A., Riberio, R., Zaiat, M., Foresti, E., & Varesche, M. B. A. (2005). Ethanol and toluene removal in a horizontal-flow anaerobic immobilized biomass reactor in the presence of sulfate. Biotechnology and Bioengineering, 92(2), 44–53.

    Google Scholar 

  • Cubas, S. A., Foresti, E., Rodrigues, J. A. D., Ratusznei, S. M., & Zaiat, M. (2004). Influence of liquid-phase mass transfer on the performance of a stirred anaerobic sequencing batch reactor containing immobilized biomass. Biochemical Engineering Journal, 17(2), 99–105.

    Article  CAS  Google Scholar 

  • Damianovic, M. H. R. Z., Moraes, E. M., Zaiat, M., & Foresti, E. (2009). Pentachlorophenol (PCP) dechlorination in horizontal-flow anaerobic immobilized biomass (HAIB) reactors. Bioresource Technology, 100(19), 4361–4367.

    Article  CAS  Google Scholar 

  • de Nardi, I. R., Zaiat, M., & Foresti, E. (1999). Influence of the tracer characteristics on hydrodynamic models of packed-bed bioreactors. Bioprocess Engineering, 21(5), 469–476.

    Article  Google Scholar 

  • de Nardi, I. R., Varesche, M. B. A., Zaiat, M., & Foresti, E. (2002). Anaerobic degradation of BTEX in a packed-bed reactor. Water Science and Technology, 45(10), 175–180.

    Google Scholar 

  • de Nardi, I. R., Ribeiro, R., Zaiat, M., & Foresti, E. (2005). Anaerobic packed-bed reactor for bioremediation of gasoline-contaminated aquifers. Process Biochemistry, 40(2), 587–592.

    Article  Google Scholar 

  • Domingues, M. R., Moraes, E. M., Vazoller, R. F., & Varesche, M. B. A. (2006). Analysis of microbial community in biofilms and planktonic cells of anaerobic thermophilic reactors. Brazilian Archives of Biology and Technology, 49(SI), 1–9.

    CAS  Google Scholar 

  • Dubois, M., Guilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

    Article  CAS  Google Scholar 

  • Foresti, E., Zaiat, M., Cabral, A. K. A., & Del Nery, V. (1995). Horizontal-flow anaerobic immobilized sludge (HAIS) reactor for paper industry wastewater treatment. Brazilian Journal of Chemical Engineering, 12, 235–239.

    CAS  Google Scholar 

  • Lalman, J. A., & Bagley, M. (2000). Anaerobic degradation and inhibitory effects on linoleic acid. Water Research, 34(17), 4220–4228.

    Article  CAS  Google Scholar 

  • Leite, J. A. C., Fernandes, B. S., Pozzi, E., Barboza, M., & Zaiat, M. (2008). Application of an anaerobic packed-bed bioreactor for the production of hydrogen and organic acids. International Journal of Hydrogen Energy, 33(2), 579–586.

    Article  CAS  Google Scholar 

  • Lens, P. N., Dijkema, C., & Stams, A. J. (1998). 13C-NMR study of propionate metabolism by sludges from bioreactors treating sulfate and sulfide rich wastewater. Biodegradation, 9(3/4), 179–186.

    Article  CAS  Google Scholar 

  • Lima, C. A. A., Ribeiro, R., Foresti, E., & Zaiat, M. (2005). Morphological study of biomass during the start-up period of a fixed-bed anaerobic reactor treating domestic sewage. Brazilian Archives of Biology and Technology, 48(5), 841–849.

    Article  CAS  Google Scholar 

  • Lokshina, L. Y., Vavilin, V. A., Kettunen, R. H., Rintala, J. A., Holliger, C., & Nozhevnikova, A. N. (2001). Evaluation of kinetic coefficients using integrated Monod and Haldane models of low-temperature acetoclastic methanogenesis. Water Research, 35(12), 2913–2922.

    Article  CAS  Google Scholar 

  • Manz, W., Amann, R., Ludwig, W., Wagner, M., & Schleifer, K. H. (1992). Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Systematic and Applied Microbiology, 15(4), 593–600.

    Article  Google Scholar 

  • Maya-Altamira, L., Baun, A., Angelidaki, I., & Schmidt, J. E. (2008). Influence of wastewater characteristics on methane potential in food-processing industry wastewaters. Water Research, 42(8–9), 2195–2203.

    Article  CAS  Google Scholar 

  • McCarty, P. L., et al. (1982). One hundred years of anaerobic treatment. In Hughes (Ed.), Anaerobic digestion 1981 (pp. 3–22). London: Elsevier.

    Google Scholar 

  • McInerney, M. J. (1988). Anaerobic hydrolysis and fermentation of fats and proteins. In A. J. B. Zendher (Ed.), Biology of anaerobic microorganisms (pp. 381–402). New Jersey: Wiley.

    Google Scholar 

  • Moraes, E. M., Adorno, M. A. T., Zaiat, M., & Foresti, E. (2000). Determination of volatile acids by gas chromatography in effluents from anaerobic reactors treating liquid and solid waste. Anais da VI Oficina e Seminário Latino Americano de Digestão Anaeróbia, Recife, 2, 146–149 (in Portuguese).

  • Oliveira, S. V. W. B., Moraes, E. M., Adorno, M. A. T., Varesche, M. B. A., Foresti, E., & Zaiat, M. (2004). Formaldehyde degradation in an anaerobic packed-bed bioreactor. Water Research, 38(7), 1685–1694.

    Article  CAS  Google Scholar 

  • Peterson, G. L. (1979). Review of the Folin phenol protein quantification method of Lowry, Rosebrough, Farr and Randall. Analytical Biochemistry, 100(2), 201–219.

    Article  CAS  Google Scholar 

  • Pinho, S. C., Fernandes, B. S., Rodrigues, J. A. D., Ratusznei, S. M., Foresti, E., & Zaiat, M. (2005). Feasibility of treating swine manure in an anaerobic sequencing batch biofilm reactor with mechanical stirring. Appl Biochem Biotech, 120(2), 109–120.

    Article  Google Scholar 

  • Postma, T., & Stroes, J. A. P. (1968). Lipid screening in clinical chemistry. Clinica Chimica Acta, 22(4), 569–578.

    Article  CAS  Google Scholar 

  • Sanz, J. L., & Köchling, T. (2007). Molecular biology techniques used in wastewater treatment: an overview. Process Biochemistry, 42(2), 119–133.

    Article  CAS  Google Scholar 

  • Sayed, S., Vanderzanden, J., Wijffels, R., & Lettinga, G. (1988). Anaerobic degradation of the various fractions of slaughterhouse waste-water. Biological Wastes, 3(2), 117–142.

    Article  Google Scholar 

  • Seborg, D. E., Edgar, T. F., & Mellichamp, D. A. (1989). Process dynamics and control. New York: Wiley.

    Google Scholar 

  • Shimada, T., Zilles, J., Raskin, L., & Morgenroth, E. (2007). Carbohydrate storage in anaerobic sequencing batch reactors. Water Research, 41(20), 4721–4729.

    Article  CAS  Google Scholar 

  • Speece, R. E. (1996). Anaerobic biotechnology for industrial wastewater. Nashville: Archae.

    Google Scholar 

  • Stahl, D. A., & Amann, R. (1991). Development and application of nucleic acid probes in bacterial systematics. In E. Stackebrandt, & M. Goodfellow (Eds.), Sequencing and hybridization techniques in bacterial systematics (pp. 205–248). England: John Wiley and Sons.

  • Tommaso, G., Varesche, M. B. A., Zaiat, M., Vazoller, R. F., & Foresti, E. (2002). Morphological observation and microbial population dynamics in anaerobic polyurethane foam biofilm degradatin gelatin. Brazilian Journal of Chemical Engineering, 19(3), 287–292.

    Article  CAS  Google Scholar 

  • Tommaso, G., Ribeiro, R., Varesche, M. B. A., Zaiat, M., & Foresti, E. (2003). Influence of multiple substrates on anaerobic protein degradation in a packed-bed bioreactor. Water Science and Technology, 48(6), 23–31.

    CAS  Google Scholar 

  • Tommaso, G., Chinalia, F. A., Varesche, M. B. A., Zaiat, M., & Foresti, E. (2005). Evaluation of anaerobic degradation of wastewater from poultry slaughterhouse in relation to the kinetics of substrate consumption and active biomass. VIII Taller e Simposio Latinoamericano Sobre Digestión Anaerobia, 2, 35–39 (in Portuguese).

    Google Scholar 

  • Vidal, G., Carvalho, A., Mendez, R., & Lema, J. M. (2000). Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresource Technology, 74(3), 231–239.

    Article  CAS  Google Scholar 

  • Voordouw, G. (1995). The genus Desulfovibrio: the centennial. Applied and Environmental Microbiology, 61(8), 2813–2819.

    CAS  Google Scholar 

  • Zaiat, M., & Foresti, E. (1997). Method for estimating the kinetics of substrate degradation in horizontal-flow anaerobic immobilized sludge (HAIS) reactor. Biotechnology Techniques, 11(5), 315–318.

    Article  CAS  Google Scholar 

  • Zaiat, M., Cabral, A. K. A., & Foresti, E. (1994). Horizontal-flow anaerobic immobilised-biomass for wastewater treatment: design and preliminary assessment of performance. Brazilian Journal of Chemical Engineering, 11(2), 33–42 (in Portuguese).

    Google Scholar 

  • Zaiat, M., Passig, F. H., & Foresti, E. (2000). Treatment of domestic sewage in horizontal-flow anaerobic immobilized biomass (HAIB) reactor. Environmental Technology, 21(10), 1139–1145.

    Article  CAS  Google Scholar 

  • Zhu, G.-F., Li, J.-Z., Wu, P., Jin, H.-Z., & Wang, Z. (2008). The performance and phase separated characteristics of an anaerobic baffled reactor treating soybean protein processing wastewater. Bioresource Technology, 99(17), 8027–8033.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to FAPESP (Sao Paulo Research Foundation) and CNPq (National Counsel of Technological and Scientific Development) for funding and to colleagues of the Laboratory of Biological Process, for all the enriching discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovana Tommaso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tommaso, G., Domingues, M.R., Ribeiro, R. et al. Anaerobic Degradation of Protein: Simplified Kinetic Modelling and Microbial Dynamics. Water Air Soil Pollut 224, 1554 (2013). https://doi.org/10.1007/s11270-013-1554-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1554-9

Keywords

Navigation