Skip to main content
Log in

Potential Risk of Arsenic and Antimony Accumulation by Medicinal Plants Naturally Growing on Old Mining Sites

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

It was found that some of the medicinal plants accumulate increased amounts of toxic elements like Cd or Pb. Less is known about the accumulation of other hazardous elements like arsenic (As) and antimony (Sb) in these species. The present paper investigated selected medicinal plants naturally growing on old mining sites in Slovakia, Central Europe, contaminated by As and Sb. Both these elements are nonessential for plants and, in higher level, might be phytotoxic. The soil concentration of As and Sb at three different localities extensively used for mining of Sb ores in former times highly exceed values characteristic for noncontaminated substrates and ranged between 146 and 540 mg kg−1 for As and 525 and 4,463 mg kg−1 for Sb. Extraction experiments of soils show differences between As and Sb leaching, as the highest amount of mobile As was released in acetic acid while Sb was predominantly released in distilled water. In total, seven different plant species were investigated (Fragaria vesca, Taraxacum officinale, Tussilago farfara, Plantago major, Veronica officinalis, Plantago media, and Primula elatior), and the concentration of investigated elements in shoot ranged between 1 and 519 mg kg−1 for As and 10 and 920 mg kg−1 for Sb. Differences in the bioaccumulation of As and Sb as well as in the translocation of these elements from root to shoot within the same species growing on different localities have been found. This indicate that efficiency of As and Sb uptake might vary between individual plants of the same species on different sites. Increased bioaccumulation of As and Sb in biomass of investigated plants might be dangerous for human when used for traditional medicinal purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Act No. 220/2004 of the Laws on the Protection and Use of Agricultural Land and amendments to Act no. 245/2003 on integrated prevention and pollution control and amending certain laws, Journal of Laws no. 96/2, Slovak Republic.

  • Anawar, H. M., Freitas, M. C., Canha, N., & Santa Regina, I. (2011). Arsenic, antimony, and other trace element contamination in a mine tailings affected area and uptake by tolerant species. Environmental Geochemistry and Health, 33, 353–362.

    Article  CAS  Google Scholar 

  • Antosiewicz, D. M., Escude-Duran, C., Wierzbowska, E., & Sklodowska, A. (2008). Indigenous plant species with the potential for the phytoremediation of arsenic and metals contaminated soil. Water, Air, and Soil Pollution, 193, 197–210.

    Article  CAS  Google Scholar 

  • Baroni, F., Boscagli, A., Protano, G., & Riccobono, F. (2000). Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environmental Pollution, 109, 347–352.

    Article  CAS  Google Scholar 

  • Baroni, F., Boscagli, A., Di Lella, L. A., Protano, G., & Riccobono, F. (2004). Arsenic in soil and vegetation of contaminated areas in southern Tuscany (Italy). Journal of Geochemical Exploration, 81, 1–14.

    Article  CAS  Google Scholar 

  • Bergqvist, C., & Greger, M. (2012). Arsenic accumulation and speciation in plants from different habitats. Applied Geochemistry, 27, 615–622.

    Article  CAS  Google Scholar 

  • Bowen, H. J. M. (1979). Environmental chemistry of the elements (p. 348). London: Academic.

    Google Scholar 

  • Brooks, R. R. (1972). Geobotany and biogeochemistry in mineral exploration (p. 290). New York: Harper & Row.

    Google Scholar 

  • Casado, M., Anawar, H. M., Garcia-Sanchez, A., & Santa Regina, I. (2007). Antimony and arsenic uptake by plants in abandoned mining area. Communications in Soil Science and Plant Analysis, 38, 1255–1275.

    Article  CAS  Google Scholar 

  • Chovan, M. (1990). Mineralogical – paragenetical relations on the Dúbrava Sb deposit and their significance metallogenesis of the Nízke Tatry Mts. Acta Geologica et Geographica. Universitatis Comenianae: Geologica., Bratislava, 45, 89–101.

    CAS  Google Scholar 

  • Chovan, M., Háber, M., Jeleň, S., & Rojkovič, I. (Eds.). (1994). Ore textures in the Western Carpathian (p. 219). Bratislava: Slovak Academic Press.

    Google Scholar 

  • Coughtrey, P. J., Jacson, D., & Thorne, M. C. (1983). Radionuclide distribution and transport in terrestrial and aquatic ecosystems (Vol. 3). Rotterdam: A.A. Balkema.

    Google Scholar 

  • Dechamps, C., Lefèbvre, C., Noret, N., & Meerts, P. (2007). Reaction norms of life history traits in response to zinc in Thlaspi caerulescens from metalliferous and nonmetalliferous sites. New Phytologist, 173, 191–198.

    Article  CAS  Google Scholar 

  • Efferth, T., & Kaina, B. (2011). Toxicities by herbal medicines with emphasis to traditional Chinese medicine. Current Drug Metabolism, 12, 989–996.

    Article  CAS  Google Scholar 

  • Erdelská, O., Erdelský, K., Kvačala, M., & Magát, R. (2012). Grandmother’s pharmacy better than gold (p. 311). Bratislava: Príroda (In Slovak).

    Google Scholar 

  • Escarré, J., Lefèbvre, C., Gruber, W., Leblanc, M., Lepart, J., Rivière, Y., et al. (2000). Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytologist, 145, 429–437.

    Article  Google Scholar 

  • Ettler, V., Mihaljevič, M., Šebek, O., & Grygar, T. (2007). Assessment of single extractions for the determination of mobile forms of metals in highly polluted soils and sediments—Analytical and thermodynamic approaches. Analytica Chimica Acta, 602, 131–140.

    Article  CAS  Google Scholar 

  • Ettler, V., Mihaljevič, M., Šebek, O., & Nechutný, Z. (2007). Antimony availability in highly polluted soils and sediments—A comparison of single extractions. Chemosphere, 68, 445–463.

    Article  Google Scholar 

  • Filella, M. (2011). Antimony interactions with heterogeneous complexants in waters, sediments and soils: A review of data obtained in bulk samples. Earth-Sciences Reviewes, 107, 325–341.

    Article  CAS  Google Scholar 

  • Filella, M., Belzile, N., & Chen, Y. W. (2002). Antimony in the environment: A review focused on natural waters. I. Occurrence. Earth Scientific Review, 57, 125–176.

    Article  CAS  Google Scholar 

  • Fox, T. R., & Comerford, N. B. (1990). Low-molecular-weight organic acids in selected forest soils of the southeastern USA. Soil Science Society of America Journal, 54, 1139–1144.

    Article  CAS  Google Scholar 

  • Hammel, W., Debus, R., & Steubing, L. (2000). Mobility of antimony in soil and its availability to plants. Chemosphere, 41, 1791–1798.

    Article  CAS  Google Scholar 

  • Hiller, E., Lalinská, B., Chovan, M., Jurkovič, Ľ., Klimko, T., Jankulár, M., et al. (2012). Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia. Applied Geochemistry, 27, 598–614.

    Article  CAS  Google Scholar 

  • Itanna, F., Breuer, J., & Olsson, M. (2008). The fate and bioavailability of some trace elements applied to two vegetable farms in Addis Ababa. African Journal of Agricultural Research, 3, 797–807.

    Google Scholar 

  • Jiménez-Ambriz, G., Petit, C., Bourrié, I., Dubois, S., Olivieri, I., & Ronce, O. (2007). Life history variation in the heavy metal tolerant plant Thlaspi caerulescens growing in a network of contaminated and noncontaminated sites in southern France: Role of gene flow, selection and phenotypic plasticity. New Phytologist, 173, 199–215.

    Article  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (1984). Trace elements in soil and plants (p. 214). Boca, Raton: CRC.

    Google Scholar 

  • Klimko, T., Chovan, M., & Huraiová, M. (2009). Hydrothermal mineralization in stibnite veins of the Spiš-Gemer rudohorie Mts. Mineralia Slovaca, 41, 115–132 (In Slovak with English abstract and summary).

    CAS  Google Scholar 

  • Klimko, T., Lalinská, B., Majzlan, J., Chovan, M., Kučerová, G., & Paul, C. (2011). Chemical composition of weathering products in neutral and acidic mine tailings from stibnite exploitation in Slovakia. Journal of Geosciences, 57, 327–340.

    Google Scholar 

  • Kloke, A. (1988). Gesetzliche Regelungen zum Schutze des Bodens vor Überlastung mit Schwermetallen in der Bundesrepublik Deutschland. In Bundesminister für Umwelt, Naturschutz und Reaktorsicherheit (publisher): Schutz des Bodens und Wassergeführdender Schichten gegen Verschmutzung aus Flächenquellen (pp. 62–73). Bonn, Germany.

  • Kováčik, J., Tomko, J., Bačkor, M., & Repčák, M. (2006). Matricaria chamomilla is not a hyperaccumulator, but tolerant to cadmium stress. Plant Growth Regulation, 50, 239–247.

    Article  Google Scholar 

  • Kráľová, K., & Masarovičová, E. (2003). Hypericum perforatum L. and Chamomilla recutita (L.) Rausch.—Accumulators of some toxic metals. Pharmazie, 58, 359–360.

    Google Scholar 

  • Kresánek, J., Krejča, J. (1982). Atlas of medicinal plants and forest fruits. Osveta, Martin, p. 768. (In Slovak).

  • Krupka, K. M., & Serne, R. J. (2002). Geochemical factors affecting the behavior of antimony, cobalt, europium, technetium, and uranium in vadose sediments (p. 95). Richland: Pacific Northwest National. Laboratory.

    Book  Google Scholar 

  • Lombi, E., Zhao, F. J., Dunham, S. J., & McGrath, S. P. (2000). Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi geosingense. New Phytologist, 145, 11–20.

    Article  CAS  Google Scholar 

  • Lux, A., Vaculík, M., Martinka, M., Lišková, D., Kulkarni, M. G., Stirk, W. A., et al. (2011). Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medicinal plant Merwilla plumbea. Annals of Botany, 107, 285–292.

    Article  CAS  Google Scholar 

  • Mackových, D., Čičmanová, S., & Pramuka, S. (2003). Forms of selected toxic elements. Partial final report of the project “Evaluation of the potential influence of geochemical environment on the health of the population in the Spiš-Gemer Ore Mountains” (p. 55). Bratislava: ŠGÚDŠ.

    Google Scholar 

  • Maity, J. P., Nath, B., Kar, S., Chen, C.-Y., Banerjee, S., Jean, J.-S., et al. (2012). Arsenic-induced health crisis in peri-urban Moyna and Ardebok villages. West Bengal. India: an exposure assessment study. Environmental Geochemistry and Health, 34, 563–574.

    Article  CAS  Google Scholar 

  • Markert, B. (1996). Instrumental element and multi-element analysis of plant samples. Methods and applications. New York: Wiley.

    Google Scholar 

  • Maruška, M., Chovan, M., & Ševc, J. (2000). Minerlogical and environmental evaluation of the settling ponds at deposit Dúbrava in Nízke Tatry Mts. Slovak Geological Magazine, 6, 61–69.

    Google Scholar 

  • Masarovičová, E., & Kráľová, K. (2007). Medicinal plants—Past, nowadays, future. Acta Horticulturae, 749, 19–27.

    Google Scholar 

  • Masarovičová, E., Kráľová, K., & Kummerová, M. (2010). Principles of classification of medicinal plants as hyperaccumulators or excluders. Acta Physiologie Plantarum, 32, 823–829.

    Article  Google Scholar 

  • Michálek, J., & Chovan, M. (1998). Structural-geological and mineralogical evaluation of Sb deposit Dúbrava. Mineralia Slovaca, 30, 25–35 (in Slovak).

    Google Scholar 

  • Mir, K. A., Rutter, A., Koch, I., Smith, P., Reimer, K. J., & Poland, J. S. (2007). Extraction and speciation of arsenic in plants grown on arsenic contaminated soils. Talanta, 72, 1507–1518.

    Article  CAS  Google Scholar 

  • Murciego, A. M., Sánchez, A. G., Gonzáles, M. A. R., Gil, E. P., Gordillo, C. T., Fernández, J. C., et al. (2007). Antimony distribution and mobility in topsoils and plants (Cytisus striatus, Cistus ladanifer and Dittrichia viscosa) from polluted Sb-mining areas in Extremadura (Spain). Environmental Pollution, 145, 15–21.

    Article  CAS  Google Scholar 

  • Nakamaru, Y., Tagami, K., & Uchida, S. (2006). Antimony mobility in Japanese agricultural soils and the factors affecting antimony sorption behavior. Environmental Pollution, 141, 321–326.

    Article  CAS  Google Scholar 

  • Okkenhaug, G., Zhu, Y. G., Luo, L., Lei, M., Li, X., & Mulder, J. (2011). Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Environmental Pollution, 159, 2427–2434.

    Article  CAS  Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184, 105–126.

    Article  CAS  Google Scholar 

  • Pan, X., Zhang, D., Chen, X., Bao, A., & Li, L. (2011). Antimony accumulation, growth performance, antioxidant defense system and photosynthesis of Zea mays in response to antimony pollution in soil. Water, Air, and Soil Pollution, 215, 517–523.

    Article  CAS  Google Scholar 

  • Pavlovič, A., Masarovičová, E., Kráľová, K., & Kubová, J. (2006). Response of chamomile plants (Matricaria recutita L.) to cadmium treatment. Bulletin of Environmental Contamination and Toxicology, 77, 763–771.

    Article  Google Scholar 

  • Pratas, J., Prasad, M. N. V., Freitas, H., & Conde, L. (2005). Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation. Journal of Geochemical Exploration, 85, 99–107.

    Article  CAS  Google Scholar 

  • Puschenreiter, M., Türktaş, M., Sommer, P., Wieshammer, G., Laaha, G., Wenzel, W. W., et al. (2010). Differentiation of metallicolous and non-metallicolous Salix caprea populations based on phenotypic characteristics and nuclear microstaellite (SSR) markers. Plant, Cell & Environment, 33, 1641–1655.

    Article  CAS  Google Scholar 

  • Quevauviller, P., Rauret, G., Ure, A., Bacon, J., & Muntau, H. (1997). The certification of the EDTA- and acetic-acid extractable contents (mass fractions) of Cd, Cr, Cu, Ni, Pb and Zn in sewage sludge amended soils. CRM 483 and 484. Report EUR 17127 EN. Brussels: European Commission.

    Google Scholar 

  • Rai, R., Pandey, S., & Rai, S. P. (2011). Arsenic-induced changes in morphological, physiological, and biochemical attributes and artemisinin biosynthesis in Artemisia annua, an antimalarial plant. Ecotoxicology, 20, 1900–1913.

    Article  CAS  Google Scholar 

  • Rapant, S., & Krčmová, K. (2007). Health risk assessment maps for arsenic groundwater content: Application of national geochemical databases. Environmental Geochemistry and Health, 29, 131–141.

    Article  CAS  Google Scholar 

  • Rapant, S., Cvečková, V., Dietzová, Z., Khun, M., & Letkovičová, M. (2009). Medical geochemistry research in Spišsko-Gemerské rudohorie MTS., Slovakia. Environmental Geochemistry and Health, 31, 11–25.

    Article  CAS  Google Scholar 

  • Rauret, G. (1997). Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta, 46, 449–455.

    Article  Google Scholar 

  • Reimann, C., Matschullat, J., Birke, M., & Salminen, R. (2010). Antimony in the environment: Lessons from geochemical mapping. Applied Geochemistry, 25, 175–198.

    Article  CAS  Google Scholar 

  • Rozložník, L. (1980). Classification of the mineralized structures in the Spišsko-gemerské Rudohorie Mts. Geologica Carpatica, 31, 121–139.

    Google Scholar 

  • Sahuquillo, A., Rigol, A., & Rauret, G. (2003). Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trends in Analytical Chemistry, 22, 152–159.

    Article  CAS  Google Scholar 

  • Seguin, V., Gagnon, C., & Courchesne, F. (2004). Changes in water extractable metals, pH and organic carbon concentrations at the soil–root interface of forested soils. Plant and Soil, 260, 1–17.

    Article  CAS  Google Scholar 

  • Shan, X. Q., Wang, Z. W., Wang, W. S., Zhang, S. Z., & Wen, B. (2003). Labile rhizosphere soil solution fraction for prediction of bioavailability of heavy metals and rare earth elements to plants. Analytical and Bioanalytical Chemistry, 375, 400–407.

    CAS  Google Scholar 

  • Street, R. A., Kulkarni, M. G., Stirk, W. A., Southway, C., & Van Staden, J. (2008). Variation in heavy metals and microelements in South African medicinal plants obtained from street markets. Food Additives and Contaminants, 25, 953–960.

    Article  CAS  Google Scholar 

  • Street, R. A., Kulkarni, M. G., Stirk, W. A., Southway, C., Abdillahi, H. S., Chinsamy, M., et al. (2009). Effect of cadmium uptake and accumulation on growth and antibacterial activity of Merwilla plumbea—An extensively used medicinal plant in South Africa. South African Journal of Botany, 75, 611–616.

    Article  CAS  Google Scholar 

  • Street, R. A., Kulkarni, M. G., Stirk, W. A., Southway, C., & Van Staden, J. (2010). Effect of cadmium on growth and micronutrient distribution in wild garlic (Tulbaghia violacea). South African Journal of Botany, 76, 332–336.

    Article  CAS  Google Scholar 

  • Tschan, M., Robinson, B., & Schulin, R. (2008). Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) from nutrient solution. Environmental Geochemistry and Health, 30, 187–191.

    Article  CAS  Google Scholar 

  • Vaculík, M., Konlechner, C., Langer, I., Adlassnig, W., Puschenreiter, M., Lux, A., et al. (2012). Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environmental Pollution, 163, 117–126.

    Article  Google Scholar 

  • Van Wyk, B. E. (2011). The potential of South African plants in the development of new medicinal products. South African Journal of Botany, 77, 812–829.

    Article  Google Scholar 

  • Verbruggen, N., Hermans, C., & Schat, H. (2009). Mechanism to cope with arsenic and cadmium excess in plants. Current Opinion in Plant Biology, 12, 364–372.

    Article  CAS  Google Scholar 

  • Visoottiviseth, P., Francesconi, K., & Sridokchan, W. (2002). The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution, 118, 453–461.

    Article  CAS  Google Scholar 

  • Wan, X., Tandy, S., Hockmann, K., & Schulin, R. (2013). Changes in speciation with waterlogging of shooting range soils and impacts on plant uptake. Environmental Pollution, 172, 53–60.

    Article  CAS  Google Scholar 

  • Wei, C., Deng, Q., Wu, F., Fu, Z., & Xu, L. (2011). Arsenic, antimony and bismuth uptake and accumulation by plants in an old antimony mine, China. Biological Trace Element Research, 144, 1150–1158.

    Article  CAS  Google Scholar 

  • Wilson, S. C., Lockwood, P. V., Ashley, P. M., & Tighe, M. (2010). The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environmental Pollution, 158, 1169–1181.

    Article  CAS  Google Scholar 

  • World Health Organization (1998). Quality control methods for medicinal plant materials. Geneva, Switzerland.

  • Zhao, F. J., & McGrath, S. P. (2009). Biofortification and phytoremediation. Current Opinion in Plant Biology, 12, 373–380.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Ma, J. F., Meharg, A. A., & McGrath, S. P. (2009). Arsenic uptake and metabolism in plants. New Phytologist, 181, 777–794.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Slovak Research and Development Agency under contract numbers APVV-0268-06, APVV-0140-10, APVV-0344-11, and APVV SK-FR-0020-11, and the Slovak Grant Agency VEGA number 1/1034/11, VEGA 1/0817/12, and by Grant of Comenius University in Bratislava, numbers UK/331/2012 and UK/445/2012, and is a part of COST FA 0905 Action. The authors appreciated valuable help of Mrs. Zuzana Šulavíková in the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Vaculík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaculík, M., Jurkovič, Ľ., Matejkovič, P. et al. Potential Risk of Arsenic and Antimony Accumulation by Medicinal Plants Naturally Growing on Old Mining Sites. Water Air Soil Pollut 224, 1546 (2013). https://doi.org/10.1007/s11270-013-1546-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1546-9

Keywords

Navigation