Skip to main content
Log in

Removal of Silver and Lead Ions from Water Wastes Using Azolla filiculoides, an Aquatic Plant, Which Adsorbs and Reduces the Ions into the Corresponding Metallic Nanoparticles Under Microwave Radiation in 5 min

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Pollution of water bodies with heavy metal ions is a major worldwide environmental problem. The objective of this study was to elucidate the mechanism in which metallic ions are adsorbed and reduced to metallic nanoparticles onto plant materials using microwave radiation. In this research, we have fabricated metallic silver and lead nanoparticles from their corresponding ions using the aquatic plants Azolla filiculoides and Pistia stratiotes (since identical results are obtained for both plants, the emphasis will be on the Azolla) under microwave radiation. Our data show that metallic silver and metallic lead nanoparticles were completely removed from the polluted solution and were embedded in the A. filiculoides surface after 5 min of microwave reaction. It was also found that, for both metals, reduction of the metallic ions was accomplished by the plant matrix without the need of an external reducing agent. Most of the particles had a spherical shape within the 10–50 nm size range. Mass balance data clearly indicate that most of the silver particles were found on the surface of the plant and not in the clean water. Pectin and α-glucuronic acid did not reduce the silver or lead ions under microwave radiation. We therefore hypothesize that perhaps the proteins or sugar alcohols in the plant matrix were serving as the reducing agents. We believe that this technique in which adsorption and reduction are combined using microwave radiation can be applied for removing and recycling metallic ions from contaminated water and industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ajmal, M., Rao, R. A. K., Rais, A., & Jameel, A. (2000). Adsorption studies on citrus reticulata (fruit peel of orange): Removal and recovery of Ni(II) from electroplating wastewater. Journal of Hazardous Materials, 79, 117–131.

    Article  CAS  Google Scholar 

  • Axtell, N. R., Sternberg, S. P. K., & Claussen, K. (2003). Lead and nickel removal using Microspora and Lemna minor. Bioresource Technology, 89, 41–48.

    Article  CAS  Google Scholar 

  • Chefetz, B., Sominski, L., Pinchas, M., Ginsburg, T., Elmachliy, S., Tel-Or, E., et al. (2005). New approach for the removal of metal ions from water: Adsorption onto aquatic plants and microwave reaction for the fabrication of nanometals. Journal of Physical Chemistry B, 109, 15179–15181.

    Article  CAS  Google Scholar 

  • Delgado, M., Bigeriego, M., & Guardiola, E. (1993). Uptake of Zn, Cr, and Cd by water hyacinths. Water Research, 27, 269–272.

    Article  CAS  Google Scholar 

  • DeWet, L. P. D., Schoonbee, H. J., Pretorius, J., & Bezuidenhout, L. M. (1990). Bioaccumulation of selected heavy-metals by the water fern, Azolla-filiculoides lam in a wetland ecosystem affected by sewage, mine and industrial-pollution. Water SA, 16, 281–286.

    CAS  Google Scholar 

  • Fievet, F., Lagier, J. P., Beaudoin, M., & Figlarz, M. (1988). A new route for the preparation of micronic and submicronic metal particles. Solid State Ionics, 26, 154.

    Article  Google Scholar 

  • Gabriel, C., Gabriel, S., Grant, E. H., Halstead, B. S. J., & Mingos, D. M. P. (1998). Dielectric parameters relevant to microwave dielectric heating. Chemical Society Reviews, 27, 213–223.

    Article  CAS  Google Scholar 

  • Grisaru, H., Palchik, O., Gedanken, A., Palchik, V., Slifkin, M. A., & Weiss, A. M. (2003). Microwave-assisted polyol synthesis of CulnTe(2) and CulnSe(2) nanoparticles. Inorganic Chemistry, 42, 7148–7155.

    Article  CAS  Google Scholar 

  • Harpeness, R., & Gedanken, A. (2004). Microwave synthesis of core–shell gold/palladium bimetallic nanoparticles. Langmuir, 20, 3431–3434.

    Article  CAS  Google Scholar 

  • Kadirvelu, K., Faur-Brasquet, C., & Le Cloirec, P. (2000). Removal of Cu(II), Pb(II), and Ni(II) by adsorption onto activated carbon cloths. Langmuir, 16, 8404–8409.

    Article  CAS  Google Scholar 

  • Katsuki, H., & Komarneni, S. (2003). Microwave-assisted polyol synthesis of Ag powders. Journal of Materials Research, 18, 747–750.

    Article  Google Scholar 

  • Kleiman, I. D., & Cogliatti, D. H. (1998). Chromium removal from aqueous solutions by different plant species. Environment Technology, 19, 1127–1132.

    Article  CAS  Google Scholar 

  • Kolthoff, I. M., & Sandell, E. B. (1958). Textbook of quantitative inorganic analysis (3rd ed.). New York: Macmillan.

    Google Scholar 

  • Komarneni, S., Li, D. S., Newalkar, B., Katsuki, H., & Bhalla, A. S. (2002). Microwave-polyol process for Pt and Ag nanoparticles. Langmuir, 18, 5959–5962.

    Article  CAS  Google Scholar 

  • Marciano, A., Chefetz, B., & Gedanken, A. (2008). Differential adsorption of silver nanoparticles to the inner and outer surfaces of the agave americana cuticle. Journal of Physical Chemistry C, 112, 18082–18086.

    Article  CAS  Google Scholar 

  • Pol, V. G., Langzam, Y., & Zaban, A. (2007). Application of microwave superheating for the synthesis of TiO2 rods. Langmuir, 23, 11211–11216.

    Article  CAS  Google Scholar 

  • Veys, P., Lejeune, A., & Van Hove, C. (2002). The pore of the leaf cavity of Azolla species: Teat cell differentiation and cell wall projections. Protoplasma, 219, 31–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Gedanken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elmachliy, S., Chefetz, B., Tel-Or, E. et al. Removal of Silver and Lead Ions from Water Wastes Using Azolla filiculoides, an Aquatic Plant, Which Adsorbs and Reduces the Ions into the Corresponding Metallic Nanoparticles Under Microwave Radiation in 5 min. Water Air Soil Pollut 218, 365–370 (2011). https://doi.org/10.1007/s11270-010-0650-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0650-3

Keywords

Navigation