Skip to main content
Log in

The Effect of Lignite and Comamonas testosteroni on Pentachlorophenol Biodegradation and Soil Ecotoxicity

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biodegradation of pentachlorophenol (PCP) in soil by autochthonous microflora and in soil bioaugmented by the bacterial strain Comamonas testosteroni CCM 7530 was studied. Subsequent addition of lignite, an abundant source of humic acids, has also been investigated as possible sorbent for PCP immobilization. Biodegradation of PCP and number of colony-forming units were determined in the three types of soil, haplic chernozem, haplic fluvisol, and haplic arenosol, freshly spiked with PCP and amended with tested sorbent. The enhancing effect of sorbent addition and bioaugmentation on PCP biodegradation depended mainly on the soil type and the initial PCP concentration. Microbial activity resulted in biotransformation of PCP into certain potentially toxic substances, probably lower chlorinated phenols that are more soluble than PCP, and therefore more toxic toward present biota. Therefore, it was necessary to monitor soil ecotoxicity during biodegradation. Addition of lignite resulted in a significant improvement of PCP biodegradation and led to a considerable decrease of soil toxicity especially in bioaugmented soils. The method could potentially serve as a promising technique in remediation technology for reducing high initial PCP content in contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bollag, J. M. (2002). Immobilization of pesticides in soil through enzymatic reactions. In N. Agathos & W. Reineke (Eds.), Biotechnology for the environment: Soil remediation ((pp, Vol. 3A, pp. 93–101). Dordrecht: Kluwer.

    Google Scholar 

  • Clapp, C. E., Hayes, M. H. B., Senesi, N., Bloom, P. R., & Jardine, P. M. (2001). Humic substances and chemical contaminants. Madison: Soil Science Society of America.

    Google Scholar 

  • De Paoli, F., & Kukkonen, J. (1997). Binding of organic pollutants to humic and fulvic acids: influence of pH and the structure of humic material. Chemosphere, 34(8), 1693–1704.

    Article  Google Scholar 

  • Dercová, K., Vrana, B., Baláž, Š., & Šándorová, A. (1996). Biodegradation and evaporation of polychlorinated biphenyls (PCBs) in liquid media. Journal of Industrial Microbiology & Biotechnology, 16, 325–329.

    Google Scholar 

  • Dercová, K., Čertík, M., Maľová, A., & Sejáková, Z. (2004). Effect of chlorophenols on the membrane lipids of bacterial cells. International Biodeterioration and Biodegradation, 54, 261–254.

    Article  Google Scholar 

  • Dercová, K., Sejáková, Z., Skokanová, M., Barančíková, G., & Makovníková, J. (2006). Potential use of organomineral complex (OMC) for bioremediation of pentachlorophenol (PCP) in soil. International Biodeterioration and Biodegradation, 58(3–4), 248–253.

    Article  Google Scholar 

  • Dercová, K., Sejáková, Z., Skokanová, M., Barančíková, G., & Makovníková, J. (2007). Bioremediation of soil contaminated with pentachlorophenol (PCP) using humic acids bound on zeolite. Chemosphere, 66, 783–790.

    Article  Google Scholar 

  • Eglite, L., Klavins M. (2002). Sorption of humic substances on aquifer material and soil components. In: Proceedings of the 20th Anniversary IHSS Conference Humic Substances: Nature’s most versatile materials, Boston, USA. pp. 146–149

  • Escher, B. I., Behra, R., Eggen, R. I. L., & Fent, K. (1997). Molecular mechanisms in ecotoxicology: an interplay between environmental chemistry and biology. Chimia, 51, 915–921.

    CAS  Google Scholar 

  • Feifičová, D., Čejková, A., Masák, J., Siglová, M., Jirků, V. (2005a). Sorption of humic acids onto bacterial surface: factors influencing this process. In N. Kalogerakis (Ed.), In: Proceedings of the 3rd European Bioremediation Conference (p. 143), Crete, Chania, Greece.

  • Feifičová, D., Čejková, A., Masák, J., Siglová, M. (2005b). The effect of humic substances on degradation of phenolic compounds. In J. Burkhard, O. Halousková (Eds.). In: Proceedings of the Conference Remediation technologies VIII (p. 123), Uherské Hradiště, Czech Republic.

  • Field, J. A., & Sierra-Alvarez, R. (2008). Microbial degradation of chlorinated phenols. Reviews in Environmental Science & Biotechnology, 7, 211–241.

    Article  CAS  Google Scholar 

  • Haluška, Ľ., Barančíková, G., Baláž, Š., Dercová, K., Vrana, B., Paz-Weisshaar, M., et al. (1995). Degradation of PCB in different soils inoculated Alcaligenes xylosoxidans. The Science of the Total Environment, 175, 275–285.

    Article  Google Scholar 

  • Hatcher, P. G., Schnitzer, M., Dennis, L. W., & Maciel, G. E. (1981). Aromaticity of humic substances in soils. Soil Science Society of America Journal, 45, 1089–1094.

    Article  CAS  Google Scholar 

  • ISO 20079 (2005). Water quality. Determination of the toxic effect of water constituents and waste water to duckweed (Lemna minor)—Duckweed growth inhibition test (p. 23).

  • Kobza J., Fiala, K., Barančíková, G., Brečková, V., Búrik, V., Houšková, B., et al. (1999). Partial monitoring system—soil: obligatory methods of soil analyses. Bratislava, Slovakia: Soil Science and Conservation Research Institute. pp. 95–97

  • Malcolm, M. L. (1990). The uniqueness of humic substances in each of soil, stream and marine environments. Analytica Chimica Acta, 232, 19–30.

    Article  CAS  Google Scholar 

  • McAllister, K. A., Hung, H., & Trevors, J. T. (1996). Microbial degradation of pentachlorophenol. Biodegradation, 7, 1–40.

    Article  CAS  Google Scholar 

  • Odokuma, L. O., & Dickson, A. A. (2003). Bioremediation of crude oil polluted tropical rain forest soil. Global Journal of Environmental Sciences, 2, 29–40.

    CAS  Google Scholar 

  • Olivier, S., Scragg, A. H., & Morrison, J. (2003). The effect of chlorophenols on the growth of Chlorella VT-1. Enzyme and Microbial Technology, 32, 837–842.

    CAS  Google Scholar 

  • Otte, M., Comeau, Y., Samson, R., & Greer, C. W. (1999). Enhancement of pentachlorophenol biodegradation using organic and inorganic supports. Bioremediation Journal, 3(1), 35–45.

    Article  CAS  Google Scholar 

  • Pansu, M., Gautheyrou, J. (2006). Titration of main functional groups. In Handbook of soil analysis (pp. 408–410). Berlin, Germany: Springer-Verlag.

  • Park, J. W., Dec, J., Kim, J. E., & Bollag, J. M. (2000). Dehalogenation of xenobiotics as a consequence of binding to humic materials. Archives of Environmental Contamination and Toxicology, 38(4), 405–410.

    Article  CAS  Google Scholar 

  • Pu, X., & Cutright, T. J. (2006). Sorption-desorption behaviour of PCP on soil organic matter and clay minerals. Chemosphere, 64, 972–983.

    Article  CAS  Google Scholar 

  • Sarkar, J. M., Malcom, R. L., & Bollag, J. M. (1988). Enzymatic coupling of 2, 4-dichlorphenol to stream fulvic acid in the presence of oxidoreductases. Soil Science Society of America Journal, 52, 688–694.

    Article  CAS  Google Scholar 

  • Seki, H., & Suzuki, A. (1995). Adsorption of heavy metal ions onto insolubilized humic acid. Journal of Colloid and Interface Science, 171, 490–494.

    Article  CAS  Google Scholar 

  • Senesi, N. (1992). Binding mechanisms of pesticides to soil humic substances. The Science of the Total Environment, 123–124, 63–76.

    Google Scholar 

  • Shaw, L. J., Beaton, Y., Glover, L. A., Killham, K., Osborn, D., & Meharg, A. A. (2000). Bioavailability of 2, 4-dichlorophenol associated with soil water-soluble humic material. Environmental Science & Technology, 34, 4721–4726.

    Article  CAS  Google Scholar 

  • Swift, R.S. (1996). Organic matter characterization. In Methods of Soil Analysis, Part 3 (pp. 1011). Chemical Methods-SSSA, Book Series 5.

  • Tan, K.H. (2003a). Chemical composition of humic matter. In Humic matter in soil and the environment (pp. 84–87). New York: Marcel Dekker, Inc.

  • Tan, K. H. (2003b). Humic matter in soil and the environment - principles and controversies (pp. 299–300). New York: Marcel Dekker.

    Book  Google Scholar 

  • Taylor, M. D., & Theng, B. K. G. (1995). Sorption of cadmium by complexes of kaolinite with humic acid. Communications in Soil Science and Plant Analysis, 26, 765–776.

    Article  CAS  Google Scholar 

  • Tuomel, M., Lyytikäinen, M., Oivanen, P., & Hataka, A. (1999). Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus. Soil Biology and Biochemistry, 31, 65–74.

    Article  Google Scholar 

  • Veselá, L., Kubal, M., Kozler, J., & Cinemania, P. (2005). Structure and properties of natural humic substances of the oxyhumolite type. Chemicke Listy, 99(10), 711–717.

    Google Scholar 

  • Wen, B., Li, R., Zhang, S., Shan, X., Fang, J., Xiao, K., et al. (2009). Immobilization of pentachlorophenol in soil using carbonaceous material amendments. Environmental Pollution, 157, 968–974.

    Article  CAS  Google Scholar 

  • Wittmann, C., Zeng, A. P., & Deckwer, W. D. (1998). Physiological characterization and cultivation strategies of the pentachlorophenol-degrading bacteria Sphingomonas chlorophenolica RA2 and Mycobacterium chlorophenolicum PCP-1. Journal of Industrial Microbiology & Biotechnology, 21, 315–321.

    Article  CAS  Google Scholar 

  • Zhang, M., Alva, A. K., Li, C., & Calvert, D. V. (1997). Chemical association of Cu, Zn, Mn and Pb in selected sandy citrus soil. Soil Science, 162, 181–188.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support from the Scientific Grant Agency of Ministry of Education of Slovak Republic and Slovak Academy of Sciences VEGA (Grant No. 1/4357/07 and 2/008/08) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Vítková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vítková, M., Dercová, K., Molnárová, J. et al. The Effect of Lignite and Comamonas testosteroni on Pentachlorophenol Biodegradation and Soil Ecotoxicity. Water Air Soil Pollut 218, 145–155 (2011). https://doi.org/10.1007/s11270-010-0630-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0630-7

Keywords

Navigation