Skip to main content
Log in

Phytosequestration of Metals in Selected Plants Growing on a Contaminated Okhla Industrial Areas, Okhla, New Delhi, India

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Contamination of metal ions in soil and water represents more pressing threats to resources as well as human health. The present research was carried out to screen the phytosequester plants growing in industrial waste- and wastewater-affected industrial areas of Okhla, New Delhi, India. Accumulation trend of metal Fe, Zn, Cu, Cr, Pb, Cd, Hg, and As from soil and wastewater by plants were collected for study. Among aquatic plants Hydrilla verticillata, Marsilea quadrifolia, and Ipomea aquatica were found to be highest metals accumulator, Eclipta alba and Sesbania cannabina among terrestrial plant were highest accumulator of metals. Among the algal spp. Spirulina platensis and Phormidium papyraceum were the most efficient in accumulating Cd and Hg. The maximum bioconcentration factor (BCF) was recorded in Hygroryza aristata for the metals (Hg, Cd) in M. quadrifolia (Cd, Cr), in E. alba (Cr, Cu), and in S. platensis (Hg, Pb). However, the translocation factor (TF) of metals was found more in M. quadrifolia followed by I. aquatica than other plants. Among all the plants, H. verticillata showed high TF and low BCF values for toxic metals (Pb, Cr) and was suitable for phytostabilization of these metals. Our study showed that native plant species growing on contaminated sites may have a potential of phytosequestration of these metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad, A., & Alam, M. (2004). Sequestration and remediation of heavy metals by Brassica sp at Hindan river sites. Indian Journal of Chemical Technology, 11, 560–564.

    Google Scholar 

  • Ajmal, M., Rao, R. A. K., Ahmad, R., Khan, M. A., et al. (2006). Adsorption studies on Parthenium hysterophorus weed: removal and recovery of Cd(II) from water. Journal of Hazardous Material B, 135, 242–248.

    Article  CAS  Google Scholar 

  • APHA. (1995). Standard methods for the examination of water and wastewater. 16th edn., APHA, AWWA and WPCF. 1995.

  • Audet, P., & Charest, C. (2007). Heavy metal phytoremediation from a meta-analytical perspective. Environmental Pollution, 147, 231–239.

    Article  CAS  Google Scholar 

  • Bhattacharya, A., Routh, J., Jacks, G., Bhattacharya, P., Morth, M., et al. (2006). Environmental assessment of abandoned mine tailings in Adak, Vasterbotten district (northern Sweden). Applied Geochemistry, 21, 1760–1780.

    Article  CAS  Google Scholar 

  • Degryse, F., & Smolders, E. (2006). Mobility of Cd and Zn in polluted and unpolluted Spodosols. European Journal of Soil Science, 57, 122–133.

    Article  CAS  Google Scholar 

  • Deng, H., Ye, Z. H., Wong, M. H., et al. (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 132, 29–40.

    Article  CAS  Google Scholar 

  • Duthie, J. F. (1960). Flora of the upper gangetic plain and of adjacent Siwalik and Sub-Himalayan tracts, vol. I and II. Calcutta: Gouranya Press Private Ltd.

    Google Scholar 

  • Dwivedi, S., Tripathi, R. D., Rai, U. N., Srivastava, S., Mishra, S., Shukla, M. K., et al. (2006). Dominance of algae in Ganga water polluted through fly-ash leaching: metal bioaccumulation potential of selected algal species. Bulletin of Environment Contamination and Toxicology, 77, 427–436.

    Article  CAS  Google Scholar 

  • Dwivedi, S., Srivastava, S., Mishra, S., Kumar, A., Tripathi, R. D., Rai, U. N., et al. (2010). Characterization of native microalgal strains for their chromium bioaccumulation potential: phytoplankton response in polluted habitats. Journal of Hazardous Material, 173, 95–101.

    Article  CAS  Google Scholar 

  • Eapen, S., & D’Souza, S. F. (2005). Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnology Advance, 23, 97–112.

    Article  CAS  Google Scholar 

  • Fischerova, Z., Tlustos, P., Szakova, J., Sichorova, K., et al. (2006). A comparison of phytoremediation capability of selected plant species for given trace elements. Environmental Pollution, 144, 93–100.

    Article  CAS  Google Scholar 

  • Ghassemzadeh, F., Yousefzadeh, H., & Arbab-Zavar, M. H. (2008). Arsenic phytoremediation by Phragmites australis: green technology. International Journal of Environmental Studies, 65, 587–594.

    Article  CAS  Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A comparative study of cadmium phytoextraction by accumulator and weed species. Environmental Pollution, 133, 365–371.

    Article  CAS  Google Scholar 

  • Gokhale, S. V., Jyoti, K. K., & Lele, S. S. (2008). Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresource Technology, 99, 3600–3608.

    Article  CAS  Google Scholar 

  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research. New York: John Wiley.

    Google Scholar 

  • Gratão, P. L., Prasad, M. N. V., Cardoso, P. F., Lea, P. J., Azevedo, R. A., et al. (2005). Phytoremediation: green technology for the clean up of toxic metals in the environment. Brazilian Journal Plant Physiology, 17, 53–64.

    Google Scholar 

  • Greger, M., Malm, T., & Kautsky, L. (2007). Heavy metal transfer from composted macroalgae to crops. European Journal of Agronomy, 26, 257–265.

    Article  CAS  Google Scholar 

  • Gupta, A. K., & Sinha, S. (2006). Role of Brassica juncea L. Czern. (var. vaibhav) in the phytoextraction of Ni from soil amended with fly-ash: selection of extractant for metal bioavailability. Journal of Hazardous Material, 136, 371–378.

    Article  CAS  Google Scholar 

  • Gupta, A. K., Dwivedi, S., Sinha, S., Tripathi, R. D., Rai, U. N., Singh, S. N., et al. (2007). Metal accumulation and growth performance of Phaseolus vulgaris grown in fly ash amended soil. Bioresource Technology, 98, 3404–3407.

    Article  CAS  Google Scholar 

  • Hoang Ha, N. T., Sakakibara, M., Sano, S., et al. (2009). Phytoremediation of Sb, As, Cu, and Zn from contaminated water by the aquatic macrophyte. Eleocharis acicularis. CLEAN-Soil, Air, Water. doi:10.1002/clen.200900061.

  • Huang, R. Q., Gao, S. F., Wang, W. L., Staunton, S., Wang, G., et al. (2006). Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian province, southeast China. The Science of the Total Environment, 368, 531–541.

    Article  CAS  Google Scholar 

  • Jackson, M. L. (1967). Soil chemical analysis (p. 498). New Delhi: Prentice Hall of India Private Ltd.

    Google Scholar 

  • Jackson, M. L. (1973). Soil chemical analysis. New Delhi: Prentice Hall of India Private Ltd.

    Google Scholar 

  • Japenga, J., Koopmans, G. F., Song, J., Römkens, P. F. A. M., et al. (2007). A feasibility test to estimate the duration of phytoextraction of heavy metals from polluted soils. International Journal of Phytoremediation, 9, 115–132.

    Article  CAS  Google Scholar 

  • Kamal, M., Ghaly, A. E., Mahmoud, N., & Cote, R. (2004). Phytoaccumulation of heavy metals by aquatic plants. Environment International, 29, 1029–1039.

    Article  CAS  Google Scholar 

  • Khan, S., Cao, Q., Chen, B. D., Zhu, Y. G., et al. (2006). Humic acids increase the phytoavailability of Cd and Pb to wheat plants cultivated in freshly spiked contaminated soil. Journal Soil Sediment, 6, 236–242.

    Article  CAS  Google Scholar 

  • Kim, I. S., Kang, H. K., Johnson-Green, P., Lee, E. J., et al. (2003). Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environmental Pollution, 126, 235–243.

    Article  CAS  Google Scholar 

  • Koopmans, G. F., Römkens, P. F. A. M., Fokkema, M. J., Song, J., Luo, Y. M., Japenga, J., et al. (2008). Feasibility of phytoextration to remediate cadmium and zink contaminated soils. Environmental Pollution, 156, 905–914.

    Article  CAS  Google Scholar 

  • Kramer, U. (2005). Phytoremediation: novel approaches to cleaning up polluted soils. Current Opinion in Biotechnology, 16, 133–141.

    Article  Google Scholar 

  • Kruatrachue, M., Pokethitiyook, P., Tanhan, P., Samranwanich, T., et al. (2008). Potential of Sonchus arvensis for the phytoremediation of lead-contaminated soil Wunrada Surat. International Journal of Phytoremediation, 10, 325–342.

    Article  Google Scholar 

  • Lee, S. B., Lee, Y. B., Lee, C. H., Hong, C. O., Kim, P. J., Yu, C., et al. (2008). Characteristics of boron accumulation by fly ash application in paddy soil. Bioresource Technology, 99, 5928–5932.

    Article  CAS  Google Scholar 

  • Li, T., & Xiong, Z. T. (2004). A novel response of wild-type duckweed (Lemna paucicostata Hegelm.) to heavy metals. Environmental Toxicology, 19, 95–102.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of American Journal, 42, 421–428.

    Article  CAS  Google Scholar 

  • Liu, X., Gao, Y., Khan, S., Duan, G., Chen, A., Ling, L., et al. (2008). Accumulation of Pb, Cu, Zn in native plants growing on contaminated sites and their potential accumulation capacity in Heqing, Yunnan. Journal of Environmental Science, 20, 1469–1474.

    Article  CAS  Google Scholar 

  • Mahmud, R., Inoue, N., Kasajima, S., Shaheen, R., et al. (2008). Assessment of potential indigenous plant species for the phytoremediation of Arsenic-contaminated areas of Bangladesh. International Journal of Phytoremediation, 10, 119–132.

    Article  CAS  Google Scholar 

  • Malik, A. (2007). Environmental challenges vis a vis opportunity: the case of water hyacinth. Environment International, 33, 122–138.

    Article  CAS  Google Scholar 

  • Marques, A. P. G. C., Oliveira, R. S., Rangel, A. O. S. S., Castro, P. M. L., et al. (2008). Application of manure and compost to contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi. Environmental Pollution, 151, 608–620.

    Article  CAS  Google Scholar 

  • McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids. Current Opinion in Biotechnology, 14, 277–282.

    Google Scholar 

  • McGrath, S. P., Lombi, E., Gray, C. W., Caille, N., Dunham, S. J., Zhao, F. J., et al. (2006). Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environmental Pollution, 141, 115–125.

    Article  CAS  Google Scholar 

  • Mishra, V. K., & Tripathi, B. D. (2008). Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology, 99, 7091–7097.

    Article  CAS  Google Scholar 

  • Mishra, S., Srivastava, S., Tripathi, R. D., Kumar, R., Seth, C. S., Gupta, D. K., et al. (2006). Lead detoxification by coontail (Ceratophyllum dermersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere, 65, 1027–1039.

    Article  CAS  Google Scholar 

  • Moreno, F. N., Anderson, C. W. N., Steward, R. B., & Robinson, B. H. (2008). Phytofiltration of mercury contaminated water: volatization and plant accumulation aspects. Environmental and Experimental Botany, 62, 78–85.

    Article  CAS  Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184, 105–126.

    Article  CAS  Google Scholar 

  • Pandey, V. C., Abhilash, P. C., & Singh, N. (2009). The Indian perspective of utilizing fly ash in phytoremediation, phytomanagement and biomass production. Journal of Environmental Management, 90, 2943–2958.

    Google Scholar 

  • Prescott, G. W. (1951). Monograph algae of the Western great lakes area. Michigan: Cambrook Institute of Sciences.

    Google Scholar 

  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees-a review. Environment International, 29, 529–540.

    Article  CAS  Google Scholar 

  • Pulford, I. D., Riddell-Black, D., Stewart, C., et al. (2002). Heavy metal uptake by willow clones from sewage sludge-treated soil: the potential for phytoremediation. International Journal of Phytoremediation, 4, 59–72.

    Article  CAS  Google Scholar 

  • Quartacci, M. F., Argilla, A., Baker, A. J. M., Navari-Izzo, F., et al. (2006). Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere, 63, 918–925.

    Article  CAS  Google Scholar 

  • Rangsayatorn, N., Pokethitiyook, P., Upatham, E. S., Lanza, G. R., et al. (2005). Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel. Environment International, 30, 57–62.

    Article  Google Scholar 

  • Robinson, N., Kim, M., Marchetti, C., Moni, L., Schroeter, C., van den Dijssel, G., et al. (2006). Arsenic hyperaccumulation by aquatic macrophytes in the Taupo volcanic zone, New Zealand. Environment Experimental Botany, 58, 206–215.

    Article  CAS  Google Scholar 

  • Satoha, A., Vudikariab, L. Q., Kuranoa, N., Miyachia, S., et al. (2005). Evaluation of the sensitivity of marine microalgal strains to the heavy metals, Cu, As, Sb, Pb and Cd. Environment International, 31, 713–722.

    Article  Google Scholar 

  • Segura-Muñoz, S. I., Oliveira, A. D. S., Nikaido, M., Trevilato, T. M. B., Bocio, A., Takayanagui, A. M. M., et al. (2006). Metal levels in sugar cane (Saccharum spp.) samples from an area under the influence of a municipal landfill and a medical waste treatment system in Brazil. Environment International, 32, 52–57.

    Article  Google Scholar 

  • Sikka, R., & Kansal, B. D. (1995). Effect of fly-ash application on yield and nutrient composition of rice, wheat and on pH and available nutrient status of soils. Bioresources Technology, 51, 199–203.

    Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Google Scholar 

  • Solisio, C., Lodi, A., Torre, P., Converti, A., Del Borghi, M., et al. (2006). Copper removal by pre-treated non-living biomass of Spirulina platensis. Bioresource Technology, 97, 1756–1760.

    Article  CAS  Google Scholar 

  • Srivastava, S., Mishra, S., Tripathi, R. D., Dwivedi, S., Trivedi, P. K., Tandon, P. K., et al. (2007). Phytochelatins and antioxidant systems respond differentially during arsenite and arsenate stress in Hydrilla verticillata (L.f.) Royle. Environmental Science Technology, 41, 2930–2936.

    Article  CAS  Google Scholar 

  • Van-Engelen, D. L., Sharpe-Pedler, R. C., Moorhead, K. K., et al. (2007). Effect of chelating agents and solubility of cadmium complexes on uptake from soil by Brassica juncea. Chemosphere, 68, 401–408.

    Article  CAS  Google Scholar 

  • Wang, S., Nan, Z., Liu, X., Li, Y., Qin, S., Ding, H., et al. (2009). Accumulation and bioavailability of copper and nickel in wheat plants grown in contaminated soils from the oasis, northwest China. Geodermal, 152, 290–295.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author would like to thank R & D Cluster unit for technical assistance during the course of this research. Moreover, the financial support from the Fundamental Research Grant Scheme (FRGS-2007, Ministry Higher Ecducation, Malaysia) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, A., Ghufran, R. & Zularisam, A.W. Phytosequestration of Metals in Selected Plants Growing on a Contaminated Okhla Industrial Areas, Okhla, New Delhi, India. Water Air Soil Pollut 217, 255–266 (2011). https://doi.org/10.1007/s11270-010-0584-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0584-9

Keywords

Navigation