Skip to main content

Advertisement

Log in

Analysis of Decadal Time Series in Wet N Concentrations at Five Rural Sites in NE Spain

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Nitrogen emissions have grown in Spain during the last 15 years. As precipitation scavenges gases and aerosols from the atmosphere, an effect on rainwater concentrations can be expected. However, time-series studies on wet N concentrations in the Iberian Peninsula are very scarce. This paper aims to fill this gap by analysing weekly rainfall N concentrations at a set of rural sites in Catalonia (NE Spain) from 1995/1996 to 2007 and a forest site monitored from 1983 to 2007. The sites encompass a range of rural environments and climate conditions, from the inland pre-Pyrenees (Sort) to the Mediterranean coast (Begur) and from north (Sort and Begur) to central (Palautordera and La Castanya) and south Catalonia (La Senia). We found a 1-year cycle for concentrations of NH +4 and NO 3 whereby higher values were reached at the end of spring–early summer, except at the easternmost coastal site of Begur. Weekly NH +4 concentrations decreased with time at all sites (except at La Senia) whilst NO 3 concentrations increased at all sites during the same period. Rainfall SO 2−4 concentrations decreased with time at all sites. The opposite trends in NO 3 and SO 2−4 concentrations determined a shift in the relative acid contribution of those anions during the 12–13-year period. To interpret the increasing trend, mean annual NO 3 concentrations were regressed against NO2 Spanish emissions and to some indicators of local anthropogenic activity. The increase at Sort and Palautordera showed good correlation with local anthropogenic indicators. Wet inorganic N deposition ranged between 4.2 and 6.7 kg ha−1 year−1. When including estimates of dry deposition, total annual deposition rose up to 10–20 kg ha−1 year−1, values that have been found to initiate adverse effects on Mediterranean-type forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aber, J. D. (1992). Nitrogen cycling and nitrogen saturation in temperate forest ecosystems. Trends in Ecology and Evolution, 7, 220–223.

    Article  Google Scholar 

  • Anatolaki, Ch., & Tsitouridou, R. (2007). Atmospheric deposition of nitrogen, sulphur and chloride in Thessaloniki, Greece. Atmospheric Research, 85, 413–428.

    Article  CAS  Google Scholar 

  • Anderson, K. A., & Downing, J. A. (2006). Dry and wet atmospheric deposition of nitrogen, phosphorus and silicon in an agricultural region. Water, Air, and Soil Pollution, 176, 351–374.

    Article  CAS  Google Scholar 

  • Avila, A. (1996). Time trends in the precipitation chemistry at a montane site in northeastern Spain for the period 1983–1994. Atmospheric Environment, 30, 1363–1373.

    Article  CAS  Google Scholar 

  • Avila, A., & Rodà, F. (2002). Assessing decadal changes in rainwater alkalinity at a rural Mediterranean site in the Montseny Mountains (NE Spain). Atmospheric Environment, 36, 2881–2890.

    Article  CAS  Google Scholar 

  • BOE. (2008). www.boe.es/g/es

  • Boixadera, J., Sió, J., Alamos, M., & Torres, E. (2000). Manual del codi de bones pràctiques agràries: Nitrogen. Direcció General de Producció Agrària i Innovació Animal. Departament d’Agricultura, Ramaderia i Pesca. Generalitat de Catalunya. p. 59.

  • Buishand, T. A., Kempen, G. T., Frantzen, A. J., Reijnders, H. F. R., & van den Eshof, A. J. (1988). Trend and seasonal variation of precipitation chemistry data in The Netherlands. Atmospheric Environment, 22, 339–348.

    Article  CAS  Google Scholar 

  • Butler, T. J., & Likens, G. E. (2001). The impact of changing regional emissions on precipitation chemistry in the eastern United States. Atmospheric Environment, 25, 305–315.

    Google Scholar 

  • Bytnerowicz, A., & Riechers, G. (1995). Nitrogenous air pollutants in a mixed conifer stand of the western Sierra Nevada, California. Atmospheric Environment, 12, 1369–1377.

    Article  Google Scholar 

  • Bytnerowicz, A., & Fenn, M. E. (1996). Nitrogen deposition in Californian forests: A review. Environmental Pollution, 92, 127–146.

    Article  CAS  Google Scholar 

  • Bytnerowicz, A., Percy, K., Riechers, G., Padgett, P., & Krywult, M. (1998). Nitric acid vapour effects on forest trees—deposition and cuticular changes. Chemosphere, 36, 697–702.

    Article  CAS  Google Scholar 

  • Castillo, S. (2006). Impacto de las masas de aire africano sobre los niveles y composición del material particulado atmosférico en Canarias y el NE de la Península Ibérica. Ph.D. dissertation, Universitat Politècnica de Catalunya, p. 382.

  • Dana, M. T., & Easter, R. C. (1987). Statistical summary and analyses of event precipitation chemistry from the MAP3S network, 1976–1983. Atmospheric Environment, 21, 113–128.

    Article  CAS  Google Scholar 

  • EEA. (2008). Annual European Community LRTAP Convention emission inventory report 1990–2006. Submission to EMEP through the Executive Secretary of the UNECE. European Environment Agency, Technical report No 7, Copenhagen, Denmark.

  • EMEP. (2007). Transboundary acidification, eutrophication and ground level ozone in Europe in 2005. EMEP report 1/2007. Norwegian Meteorological Institute.

  • Escarré, A., Carratalà, A., Avila, A., Bellot, J., Piñol, J., & Millán, M. (1999). Precipitation chemistry and air pollution. In F. Rodà, J. Retana, C. A. Gracia & J. Bellot (Eds.), Ecology of Mediterranean evergreen oak forests (pp. 195–208). Berlin: Springer.

    Google Scholar 

  • Escudero, M., Castillo, S., Querol, X., Avila, A., Alarcón, M., Viana, M. M., et al. (2005). Wet and dry African dust episodes over eastern Spain. Journal of Geophysical Research, 110, D18S08. doi:10.1029/2004JD004731.

    Article  CAS  Google Scholar 

  • Fagerli, H., & Aas, W. (2008). Trends of nitrogen in air and precipitation: Model results and observations at EMEP sites in Europe, 1980–2003. Environmental Pollution, 154, 448–461.

    Article  CAS  Google Scholar 

  • Fenn, M. E., & Bytnerowicz, A. (1997). Summer throughfall and winter deposition in the San Bernardino Mountains in southern California. Atmospheric Environment, 31, 673–683.

    Article  CAS  Google Scholar 

  • Fenn, M. E., Jovan, S., Yuan, F., Geiser, L., Meixner, T., & Gimeno, B. S. (2008). Empirical and simulated critical loads for nitrogen deposition in California mixed conifer forests. Environmental Pollution, 155, 492–511.

    Article  CAS  Google Scholar 

  • Galloway, J. N., & Cowling, E. B. (2002). Reactive nitrogen and the world: 200 years of change. Ambio, 31, 64–71.

    Google Scholar 

  • Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., et al. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889–892.

    Article  CAS  Google Scholar 

  • Gruber, N., & Galloway, J. N. (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451, 293–296.

    Article  CAS  Google Scholar 

  • Hedin, L. O., Granat, L., Likens, G. E., Buishand, T. A., Galloway, J. N., Butler, T. J., et al. (1994). Steep declines in atmospheric base cations in regions of Europe and North America. Nature, 367, 351–354.

    Article  CAS  Google Scholar 

  • Hirsch, R. M., & Slack, J. R. (1984). A nonparametrical trend test for seasonal data with serial dependence. Water Resources Research, 20, 727–732.

    Article  Google Scholar 

  • IDESCAT. (2008). www.idescat.net

  • Kelly, V. R., Lovett, G. M., Weathers, K. C., & Likens, G. E. (2002). Trends in atmospheric concentration and deposition compared to regional and local pollutant emissions at a rural site in southeastern New York, USA. Atmospheric Environment, 36, 1569–1575.

    Article  CAS  Google Scholar 

  • Konovalov, I. B., Beekmann, M., Burrows, J. P., & Richter, A. (2008). Satellite measurement based estimates of decadal changes in European nitrogen oxides emissions. Atmospheric Chemistry and Physics, 8, 2623–2641. www.atmos-chem-phys.net/8/2623/2008/.

    Article  CAS  Google Scholar 

  • Lehmann, C. M. B., Bowersox, C. van, & Larson, S. M. (2005). Spatial and temporal trends of precipitation chemistry in the United States, 1985-2002. Environmental Pollution, 135, 347–361.

    Google Scholar 

  • Lynch, J. A., van Bowersox, C., & Grimm, J. W. (2000). Changes in sulfate deposition in eastern USA following implementation of phase I of title IV of the Clean Air Act Amendments of 1990. Atmospheric Environment, 34, 1665–1680.

    Article  CAS  Google Scholar 

  • Martin Vide, J. (1999). Els climes del present. La pluviometria catalana. In J. Calbó, J. Colomer & T. Serra (Eds.), El clima Local. Quaderns 21 (pp. 17–23). Banyoles: CECB.

    Google Scholar 

  • Meixner, T., & Fenn, M. (2004). Biogeochemical budgets in a Mediterranean catchment with high rates of atmospheric N deposition—importance of scale and temporal asynchrony. Biogeochemistry, 70, 331–356.

    Article  CAS  Google Scholar 

  • Mosello, R., Bianchi, M., Brizzio, M. C., Geiss, H., Leydendecker, W., Marchetto, A., et al. (1998). Acid rain analysis. Environment Institute. Joint Research Centre. EUR 19015 EN. 81pp.

  • Mulligan, D., Bouraoui, F., Grizzetti B., Aloe, A., Dusart, J. (2006). An atlas of pan-European data for investigating the fate of agrochemicals in terrestrial ecosystems. Institute for Environment and Sustainability. European Communities, EUR 22334 EN, Luxembourg.

  • Ninyerola, M., Pons, X., & Roure, J. M. (2000). A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. International Journal of Climatology, 20, 1823–1841.

    Article  Google Scholar 

  • Ostrom, C. W., Jr. (1991). Time series analysis: Regression techniques (quantitative applications in the social sciences ser., no. 9). London: Sage.

    Google Scholar 

  • Padgett, P. E., Allen, E. B., Bytnerowicz, A., & Minnich, R. A. (1999). Changes in soil inorganic nitrogen as related to anthropogenic nitrogenous pollutants in Mediterranean-type ecosystems in southern California. Atmospheric Environment, 33, 769–781.

    Article  CAS  Google Scholar 

  • Prado-Fiedler, R. (1990). On the relationship between precipitation amount and wet deposition of nitrate and ammonium. Atmospheric Environment, 24, 3061–3065.

    Google Scholar 

  • Puig, R., Avila, A., & Soler, A. (2008). Sulphur isotopes as tracers of the influence of a coal-fired power plant on a Scots pine forest in Catalonia (NE Spain). Atmospheric Environment, 42, 733–745.

    Article  CAS  Google Scholar 

  • Querol, X., & 24 authors. (2006). Atmospheric particulate matter in Spain: Levels, composition and source origin (p. 40). Madrid: Ministerio de Medio Ambiente.

    Google Scholar 

  • Rodà, F., Retana, J., Gracia, C. A., & Bellot, J. (1999). Ecology of Mediterranean evergreen oak forests. Ecological studies, vol. 137. Berlin: Springer. 373pp.

    Google Scholar 

  • Rodà, F., Avila, A., & Rodrigo, A. (2002). Nitrogen deposition in Mediterranean forests. Environmental Pollution, 118, 205–213.

    Article  Google Scholar 

  • Rodrigo, A., Avila, A., & Rodà, F. (2003). The chemistry of precipitation, throughfall and stemflow in two holm oak (Quercus ilex L.) forests under a contrasted pollution environment in NE Spain. Science of the Total Environment, 305, 195–205.

    Article  CAS  Google Scholar 

  • Scargle, J. D. (1982). Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophysical Journal, 263, 835–853.

    Article  Google Scholar 

  • Seto, S., Nakamura, A., Noguchi, I., Ohizumi, T., Fukazaki, N., Toyama, S., et al. (2002). Annual and seasonal trends in chemical composition of precipitation in Japan during 1989–1998. Atmospheric Environment, 26, 3505–3517.

    Article  Google Scholar 

  • Stoddard, J. L. (1994). Long-term changes in watershed retention of nitrogen: its causes and aquatic consequences. In L. A. Baker (Ed.), Environmental chemistry of lakes and reservoirs. Advances in chemistry series, 237 (pp. 223–284). Washington D.C.: American Chemical Society.

    Chapter  Google Scholar 

  • Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., et al. (1997). Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7, 737–750.

    Google Scholar 

  • Walker, J. T., Aneja, V. P., & Dickey, D. A. (2000). Atmospheric transport and wet deposition of ammonium in North Carolina. Atmospheric Environment, 34, 3407–3418.

    Article  CAS  Google Scholar 

  • Warneck, P. (1988). Chemistry of the Natural Atmosphere. San Diego: Academic Press. 757 pp.

  • Wolfe, A. H., & Patz, J. A. (2002). Reactive nitrogen and human health: Acute and long-term implications. Ambio, 31, 120–125.

    Google Scholar 

Download references

Acknowledgements

We thank the finantial support from the Spanish Government (CGL2006-04025/BOS, CGL2005-07543-CLI and Consolider Montes CSD2008-00040 grants), CIEMAT-MARM project on “Critical loads and levels” and the Catalan Government (SGR2005-00312 grant) and Departament de Medi Ambient i Habitatge grants. Roberto Molowny-Horas acknowledges the finantial support of the Spanish MICINN and the European Social Fund through the Plan Nacional de Potenciación de Recursos Humanos. Thanks are due to field and laboratory personnel, especially Sonia Castillo and Rebeca Izquierdo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Avila.

Appendix

Appendix

The use of logarithm of concentrations instead of concentrations in the regression approach above precludes the direct identification of coefficient b as a trend term of the untransformed concentration time series. However, it is easy to show that the so-calculated coefficient b is, in fact, a good approximation to the annual change rate of the concentrations. Let y the natural logarithm of the concentration of a compound z such that y = Ln (z). Then, taking differences:

$$ d{\text{Ln}}(z) = \frac{{d{\text{z}}}}{z} = a\; \times \;d\left( {\cos \left( {\frac{{2\pi }}{365}t - \phi } \right)} \right) + b\; \times \;dt + c\; \times \;dP $$

where each parameter is defined as in Eq. 4 above. The term dz/z is the instantaneous change rate in the concentration of compound z and is a function of the summation of three terms: a trigonometric function which cancels if integrated in a 1-year interval, a constant term b and a term that depends on the precipitation. We can now readily identify:

$$ b\; \times \;dt = \left( {\frac{dz}{z}} \right)_{\text{trend}} $$

as the instantaneous change rate in the concentration of compound z due to the presence of a trend in the time series. Given that, in general, z » dz and that changes in concentration due to the trend are very small during 1 year, we can conclude that:

$$ b \cdot \int\limits_{\text{1 year}} {dt} = b = \int {\left( {\frac{dz}{z}} \right)_{\text{trend}} } \approx \frac{1}{{\overline{z} }}\; \times \;\Delta z $$

where ∆z is the total change of the concentration in a year and \( \overline{z} \) is the yearly average of the concentration. Thus, coefficient b clearly represents the approximate annual change rate in concentration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avila, A., Molowny-Horas, R., Gimeno, B.S. et al. Analysis of Decadal Time Series in Wet N Concentrations at Five Rural Sites in NE Spain. Water Air Soil Pollut 207, 123–138 (2010). https://doi.org/10.1007/s11270-009-0124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-009-0124-7

Keywords

Navigation