Skip to main content

Optimal Design of Pressurized Irrigation Networks to Minimize the Operational Cost under Different Management Scenarios


The adoption of measures leading to higher efficiencies in the use of both water and energy in water distribution networks is strongly demanded. The methodology proposed combines a multi-objective approach and a financial analysis to determine de optimal design of pressurized irrigation networks which entails the minimization of both the investment cost and operational cost under three operating scenarios that incorporate energy saving strategies: 1- all hydrants operate simultaneously; 2- hydrants are grouped into sectors and irrigation turns are established; 3- the on-demand operation of the network is assumed. This methodology has been applied in a real irrigation network located in Southern Spain showing that the lowest overall design cost (investment and operational costs) is achieved in scenario 2. The comparison of the selected solutions in the three proposed scenarios with the current network design considering the total fulfillment of irrigation requirements showed that operational cost savings between 65% and 76% could be achieved.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  • Allen RG, Pereira L, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. In: FAO irrigation and drainage paper No. 56. Rome. Italy

  • Baños R, Gil C, Reca J, Ortega J (2010) A Pareto-based memetic algorithm for optimization of looped water distribution systems. Eng Optim 42:223–240. doi:10.1080/03052150903110959

    Article  Google Scholar 

  • BOE (2014) Circular 3/2014, de 2 de julio, de la Comisión Nacional de los Mercados y la Competencia, por la que se establece la metodología para el cálculo de los peajes de transporte y distribución de electricidad. Bol Estado 175:57158–57184

    Google Scholar 

  • Carrillo Cobo MT, Rodríguez Díaz JA, Montesinos P et al (2011) Low energy consumption seasonal calendar for sectoring operation in pressurized irrigation networks. Irrig Sci 29:157–169. doi:10.1007/s00271-010-0228-2

    Article  Google Scholar 

  • Chandapillai J, Sudheer KP, Saseendran S (2012) Design of Water Distribution Network for equitable supply. Water Resour Manag 26:391–406. doi:10.1007/s11269-011-9923-x

    Article  Google Scholar 

  • Creaco E, Franchini M (2014) Low level hybrid procedure for the multi-objective design of water distribution networks. Procedia Eng 70:369–378. doi:10.1016/j.proeng.2014.02.042

    Article  Google Scholar 

  • Creaco E, Pezzinga G (2010) Multiobjective optimization of pipe replacements and control valve installations for leakage attenuation in water distribution networks. Water Resour Plan Manag:1–10. doi:10.1061/(ASCE)WR.1943-5452.0000458

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197. doi:10.1109/4235.996017

    Article  Google Scholar 

  • EEA (2009) Water resources across Europe- confronting wate scarcity and drought. EEA Rep 2:Denmark

  • Farmani R, Abadia R, Savic D (2007) Optimum design and Management of Pressurized Branched Irrigation Networks. J Irrig Drain Eng 133:528–537. doi:10.1061/(ASCE)0733-9437(2007)133:6(528)

    Article  Google Scholar 

  • Fernández García I, Creaco E, Rodríguez Díaz JA et al (2015) Rehabilitating pressurized irrigation networks for an increased energy efficiency. Agric Water Manag. doi:10.1016/j.agwat.2015.10.032

    Google Scholar 

  • Fernández García I, Montesinos P, Camacho Poyato E, Rodríguez Díaz JA (2016) Energy cost optimization in pressurized irrigation networks. Irrig Sci 34:1–13. doi:10.1007/s00271-015-0475-3

    Article  Google Scholar 

  • Fernández García I, Moreno MA, Rodríguez Díaz JA (2014) Optimum pumping station management for irrigation networks sectoring: case of Bembezar MI (Spain). Agric Water Manag 144:150–158. doi:10.1016/j.agwat.2014.06.006

    Article  Google Scholar 

  • González Perea R, Camacho Poyato E, Montesinos P, Rodríguez Díaz JA (2015) Irrigation demand forecasting using artificial Neuro-genetic networks. Water Resour Manag. doi:10.1007/s11269-015-1134-4

    Google Scholar 

  • González-Cebollada C, Macarulla B, Sallán D (2011) Recursive Design of Pressurized Branched Irrigation Networks. J Irrig Drain Eng 137:375–382. doi:10.1061/(ASCE)IR.1943-4774.0000308

    Article  Google Scholar 

  • Jiménez-Bello MA, Martínez Alzamora F, Bou Soler V, Ayala HJB (2010) Methodology for grouping intakes of pressurised irrigation networks into sectors to minimise energy consumption. Biosyst Eng 105:429–438. doi:10.1016/j.biosystemseng.2009.12.014

    Article  Google Scholar 

  • Marques J, Cunha M, Savić DA (2015) Multi-objective optimization of water distribution systems based on a real options approach. Environ Model Softw 63:1–13. doi:10.1016/j.envsoft.2014.09.014

    Article  Google Scholar 

  • MINETUR (2014) Orden IET/107/2014, de 31 de enero, por la que se revisan los peajes de acceso de energía eléctrica para 2014. Spanish ministry of industry, energy and tourism Madrid (Spain)

  • Moreno MA, Carrión PA, Planells P et al (2007) Measurement and improvement of the energy efficiency at pumping stations. Biosyst Eng 98:479–486. doi:10.1016/j.biosystemseng.2007.09.005

    Article  Google Scholar 

  • Navarro Navajas JM, Montesinos P, Poyato EC, Rodríguez Díaz JA (2012) Impacts of irrigation network sectoring as an energy saving measure on olive grove production. J Environ Manag 111:1–9. doi:10.1016/j.jenvman.2012.06.034

  • OMIE (2014) OMI-Polo Español S.A. Accessed 1 Jan 2014

  • Pratap R (2010) Getting started with Matlab. A quick introduction for scientist and engineers, Oxford Uni. USA

  • Reca J, Martínez J, Gil C, Baños R (2008) Application of several meta-heuristic techniques to the optimization of real looped water distribution networks. Water Resour Manag 22:1367–1379. doi:10.1007/s11269-007-9230-8

    Article  Google Scholar 

  • Rodríguez Díaz JA, Camacho Poyato E, Blanco Pérez M (2011) Evaluation of water and energy use in pressurized irrigation networks in Southern Spain. J Irrig Drain Eng 137:644–650. doi:10.1061/(ASCE)IR.1943-4774.0000338

    Article  Google Scholar 

  • Rodríguez-Díaz JA, Montesinos P, Camacho Poyato E (2012) Detecting critical points in on-demand irrigation pressurized networks - a new methodology. Water Resour Manag 26:1693–1713. doi:10.1007/s11269-012-9981-8

    Article  Google Scholar 

  • Rossman L (2000) EPANET 2. Users manual. US Environmental Protection Agency (EPA), USA

  • Shibu A, Janga Reddy M (2013) Cross entropy optimization for optimal Design of Water Distribution Networks. Water Resour Manag 5:308–316. doi:10.1007/s11269-014-0728-6

    Google Scholar 

  • Tarjuelo JM, Rodriguez-Diaz JA, Abadía R et al (2015) Efficient water and energy use in irrigation modernization: lessons from Spanish case studies. Agric Water Manag 162:67–77. doi:10.1016/j.agwat.2015.08.009

    Article  Google Scholar 

  • Wang Q, Creaco E, Franchini M et al (2015) Comparing low and high-level hybrid algorithms on the two-objective optimal design of water distribution systems. Water Resour Manag 29:1–16. doi:10.1007/s11269-014-0823-8

    Article  Google Scholar 

Download references


This research is part of the TEMAER project (AGL2014-59747-C2-2-R), funded by the Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations


Corresponding author

Correspondence to I. Fernández García.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernández García, I., Montesinos, P., Camacho Poyato, E. et al. Optimal Design of Pressurized Irrigation Networks to Minimize the Operational Cost under Different Management Scenarios. Water Resour Manage 31, 1995–2010 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Water distribution systems
  • Irrigation networks
  • Optimization
  • Energy efficiency