Skip to main content
Log in

Nutrients Seasonal Variation and Budget in Jiaozhou Bay, China: A 3-Dimensional Physical–Biological Coupled Model Study

  • Published:
Water, Air, & Soil Pollution: Focus

Abstract

A 3-D biological model was developed and coupled to a hydrodynamic model, i.e., Princeton Ocean Model, to simulate the seasonal variation and budget of dissolved inorganic nitrogen, phosphate, and silicate in Jiaozhou Bay. The modeled nutrients distribution pattern is consistent with observation. Silicate, the most important limiting element for phytoplankton growth, is characterized by consumption in spring, increase in summer and autumn, and accumulation in winter, whereas dissolved inorganic nitrogen and phosphorous have increasing trend with low rates in spring, due to excessive river loads. Phytoplankton plays an important role in nutrient renewal by photosynthesis and respiration processes. During an annual cycle, 7.83 × 103 t N, 0.28 × 103 t P, and 3.93 × 103 t Si are transported to the bay’s outer sea, i.e., the Yellow Sea, suggesting that Jiaozhou Bay is a significant source of nutrients for the Yellow Sea. The spatial distribution of nutrients is characterized by vertically homogeneous profiles, with high concentration inside the bay and low concentration toward the bay channel. These features are mainly governed by strong turbulent mixing, fluvial influx, water exchange rate, and Yellow Sea water intrusion. Numerical experiments suggest that the government should pay enough attention to proper layout of sewage drainage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azumaya, T., Isoda, Y., & Noriki, S. (2001). Modeling of the spring bloom in the Funka Bay, Japan. Continental Shelf Research, 21, 473–494.

    Article  Google Scholar 

  • Blumberg, A. F., & Mellor, G. L. (1987). A description of a three-dimensional coastal ocean circulation model. In N.S. Heaps (Ed.), Three-dimensional Coastal Ocean Models. Coastal and Estuarine Sciences, vol. 4 (pp. 1–16). Washington: AGU.

    Google Scholar 

  • Casulli, V. (1990). Semi-implicit finite difference methods for the two-dimensional shallow water equations. Journal of Computational Physics, 86, 56–74.

    Article  Google Scholar 

  • Chen, C. S., Ji, R. B., Zheng, L. Y., Zhu, M. Y., & Rawson, M. (1999). Influences of physical processes on the ecosystem in Jiaozhou Bay: A coupled physical and biological model experiment. Journal of Geophysical Research, 104, 29925–29949.

    Article  CAS  Google Scholar 

  • Cui, M. C., & Zhu, H. (2001). Coupled physical–ecological modelling of the central part of Jiaozhou Bay. Part Two: Coupled with an ecological model. Chinese Journal of Oceanology and Limnology, 19, 21–28.

    Article  Google Scholar 

  • Dale, A. W., & Prego, R. (2003). Tidal and seasonal nutrient dynamics and budget of the Chupa Estuary, White Sea (Russia). Estuarine, Coastal and Shelf Science, 56, 377–389.

    Article  CAS  Google Scholar 

  • Ding, W. L. (1992). Tides and tidal currents. In R. Y. Liu (Ed.), Ecology and living resources of Jiaozhou Bay (pp. 30–56). Beijing: Science Press, (in Chinese).

    Google Scholar 

  • Editorial Board of Annals of Bays in China (Ed.) (1993). Annals of Bays in China, 4. Beijing: Ocean Press, (in Chinese).

  • Edward, S. G., Jeffrey, R. K., & Stephen, G. M. (1999). Evaluation of advective schemes for estuarine salinity simulations. Journal of Hydraulic Engineering, 125, 32–46.

    Article  Google Scholar 

  • Fasham, M. J. R., Duchlow, H. W., & Mckelvie, S. M. (1990). A nitrogen-based model of plankton dynamics in the oceanic mixed layer. Journal of Marine Research, 48, 591–639.

    CAS  Google Scholar 

  • Ferreira, J. G., Wolff, W. J., Simas, T. C., & Bricker, S. B. (2005). Does biodiversity of estuarine phytoplankton depend on hydrology? Ecological Modelling, 187, 513–523.

    Article  Google Scholar 

  • Franks, P. J. S., & Chen, C. (1996). Plankton production in tidal fronts: A model of Georges Bank in summer. Journal of Marine Research, 54, 631–651.

    Article  CAS  Google Scholar 

  • Franks, P. J. S., Wroblewski, J. S., & Flierl, G. R. (1986). Behavior of a simple plankton model with flood level accumulation byherbivores. Marine Biology, 96, 121–129.

    Article  Google Scholar 

  • Fransz, H. G., & Verhagen, J. H. G. (1985). Modelling research on the production cycle of phytoplankton in the Southern Bight of the North Sea in relation to river-borne nutrients loads. Netherlands Journal of Sea Research, 19, 241–250.

    Article  Google Scholar 

  • Ge, M., Wang, X. L., Yan, J., Shi, X. Y., Zhu, C. J., & Jiang, F. H. (2003). The calculation of environmental capacities of nutrients in the Jiaozhou Bay. Marine Sciences, 27, 36–42, (in Chinese, with English abstract).

    CAS  Google Scholar 

  • Jiang, F. H., Wang, X. L., Shi, X. Y., Zhu, C. J., Han, X. R., & Zhang, L. (2002). Benthic exchange rate and flux of dissolved silicate at the sediment–water interface in Jiaozhou Bay. Journal of Ocean University of Qingdao, 32, 1012–1018, (in Chinese, with English abstract).

    CAS  Google Scholar 

  • Jiang, F. H., Wang, X. L., Shi, X. Y., Zhu, C. J., & Han, X. R. (2003). Benthic exchange rates and fluxes of PO4-P at the sediment–water interface in Jiaozhou Bay. Marine Science, 27, 50–54, (in Chinese, with English abstract).

    Google Scholar 

  • Jiang, F. H., Wang, X. L., Shi, X. Y., Zhu, C. J., Hu, H. Y., & Han, X. R. (2004). Benthic exchange rates and fluxes of dissolved inorganic nitrogen at the sediment–water interface in Jiaozhou Bay. Marine Science, 28, 13–18, (in Chinese, with English abstract).

    Google Scholar 

  • Jiao, N. Z. (Ed.) (2001). Ecological processes and sustainable development of typical coastal water ecosystems in China. Beijing: Science Press, (in Chinese).

  • Joint, I., Lewis, J., Aiken, J., Proctor, R., Moore, G., Higman, W., et al. (1997). Interannual variability of PSP (paralytic shell-fish poisoning) outbreaks on the northeast UK coast. Journal of Plankton Research, 19, 937–956.

    Article  Google Scholar 

  • Klepper, O. (1995). Modelling the oceanic food web using a quasi steady-state approach. Ecological Modelling, 77, 33–41.

    Article  Google Scholar 

  • Le Pape, O., & Menesguen, A. (1997). Hydrodynamic prevention of eutrophication in the Bay of Brest (France), a modelling approach. Journal of Marine System, 12, 171–186.

    Article  Google Scholar 

  • Li, C. L., Zhang, F., Shen, X., Yang, B., Shen, Z. L., & Sun, S. (2005a). Concentration, distribution and annual fluctuation of chlorophyll-a in the Jiaozhou Bay. Oceanologica et Limnologica Sinica, 36, 499–506, (in Chinese, with English abstract).

    Google Scholar 

  • Li, Y., Li, R. X., Wang, Z. L., Zhu, M. Y., Sun, P. X., & Xia, B. (2005b). A preliminary study on phytoplankton communitiy structure and its changes in Jiaozhou Bay. Advances in Marine Science, 23, 329–334, (in Chinese, with English abstract).

    Google Scholar 

  • Lin, C. L, Ning, X. R., Su, J. L., Lin, Y. A., & Xu, B. R. (2005). Environmental changes and the responses of the ecosystems of the Yellow Sea during 1976–2000. Journal of Marine Systems, 55, 223–234.

    Article  Google Scholar 

  • Liu, D. Y. (2004a) Community structure succession study of phytoplankton and sediment diatom in Jiaozhou Bay. Dissertation, Ocean University of China (in Chinese, with English abstract).

  • Liu, Z. (2004b) Research on modeling water exchange and nutrient budget in Jiaozhou Bay. Dissertation, Ocean University of China (in Chinese, with English abstract).

  • Liu, S. M., Li, X. N., Zhang, J., Wei, H., Ren, J. L., & Zhang, G. L. (2007). Nutrient dynamics in Jiaozhou Bay (in this volume).

  • Liu, S. M., Zhang, J., Chen, S. Z., Chen, H. T., Hong, G. H., Wei, H., et al. (2003). Inventory of nutrient compounds in the Yellow Sea. Continental Shelf Research, 23, 1161–1174.

    Article  Google Scholar 

  • Liu, S. M., Zhang, J., Chen, H. T., & Zhang, G. S. (2005). Factors influencing nutrient dynamics in the eutrophic Jiaozhou Bay, North China. Progress in Oceanography, 66, 66–85.

    Article  Google Scholar 

  • Liu, Z., Wei, H., Liu, G. S., & Zhang, J. (2004). Simulation of water exchange in Jiaozhou Bay by average residence time approach. Estuarine, Coastal and Shelf Science, 61, 25–35.

    Article  CAS  Google Scholar 

  • Mellor, G. L., & Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Review of Geophysics and Space Physics, 20, 851–875.

    Article  Google Scholar 

  • Moll, A., & Radach, G. (2003). Review of three-dimensional ecological modelling related to the North Shelf system. Part One: Models and their results. Progress in Oceanography, 57, 175–217.

    Article  Google Scholar 

  • Park, K., Kuo, A. Y., Shen, J., & Hamrick, J. M. (1995). A three-dimensional hydrodynamic eutrophication model (HEM-3D): description of water quality and sediment process submodels. Special Report in Applied Marine Science and Ocean Engineering, No. 327. Virginia Institute of Marine Science, College of William and Mary.

  • Patsch, J., & Radach, G. (1997). Long-term simulation of the eutrophication of the North Sea: Temporal development of nutrients, chlorophyll and primary production in comparison to observations. Journal of Sea Research, 38, 275–310.

    Article  Google Scholar 

  • Radach, G., & Moll, A. (1993). Estimation of the variability of production by simulating annual cycles of phytoplankton in the central North Sea. Progress in Oceanography, 31, 339–419.

    Article  Google Scholar 

  • Ren, L. (1999) Simulation study on nitrogen annual cycle of the pelagic system in Jiaozhou Bay. Dissertation, Ocean University of Qingdao (in Chinese, with English abstract).

  • Shen, Z. L. (2001). Historical changes in nutrient structure and its influences on phytoplankton composition in Jiaozhou Bay. Estuarine, Coastal and Shelf Science, 52, 211–224.

    Article  CAS  Google Scholar 

  • Tian, T., Wei, H., Su, J., Chung, C. S., & Sun, W. X. (2003). Study on cycle and budgets of nutrients in the Yellow Sea. Advances in Marine Science, 21, 1–11, (in Chinese, with English abstract).

    Google Scholar 

  • Wan, X. Q., Bao, X. W., Wu, D. X., Guo, X. S., & Jiang, H. (2003). Numerical simulation of the tidal currents and the pollutant diffusion in Jiaozhou Bay. Marine Science, 27, 31–36, (in Chinese, with English abstract).

    Google Scholar 

  • Wan, Z. W. (1999) 2-Order turbulence closure plankton ecosystem dynamics model and its application. Dissertation, Institute of Oceanography, Chinese Academy of Science (in Chinese, with English abstract).

  • Wang, Q., & Gao, H. W. (2003). Study on wind stress and air–sea exchange over coastal waters of Qingdao. Advances in Marine Science, 21, 11–20, (in Chinese, with English abstract).

    Google Scholar 

  • Wang, S. Y. (2004). Groundwater and nutrients discharge into Jiaozhou Bay from ambient areas. Dissertation, Ocean University of China (in Chinese, with English abstract).

  • Wei, H., Sun, J., Moll A., & Zhao, L. (2004a). Plankton dynamics in the Bohai Sea – observations and modeling. Journal of Marine System, 44, 233–251.

    Article  Google Scholar 

  • Wei, H., Wang, H. T., & Liu Z. (2004b). Calculation of mixing parameters in Jiaozhou Bay by intensive observation of hydrographic factors. Periodical of Ocean University of China, 34, 737–741, (in Chinese, with English abstract).

    Google Scholar 

  • Weng, X. C., Zhu, L. B., & Wang, Y. F. (1992). Physical oceanography. In R. Y. Liu (Ed.), Ecology and Living Resources of Jiaozhou Bay (pp. 20–29). Beijing: Science Press, (in Chinese).

    Google Scholar 

  • Wu, Z. M., Zhai, X. M., Zhang, Z. N., Yu, G. Y., Zhang, X. L., & Gao, S. H. (2001). A simulation analysis on pelagic–benthic coupling ecosystem of the northern Jiaozhou Bay, Qingdao, China. Acta Oceanologica Sinica, 20, 443–453, (in Chinese, with English abstract).

    CAS  Google Scholar 

  • Yan, J., Wang, H., & Bao, X. W. (2001). The simulation of 3D tidal and residual current in Jiaozhou Bay. Advances in Earth Sciences, 16, 172–177, (in Chinese, with English abstract).

    Google Scholar 

  • Yang, Y. L., & Wu, Y. C. (1999). Temperature and salinity structures of Jiaozhou Bay waters during 1991–1995. Journal of Oceanography of Huanghai and Bohai Seas, 17, 31–36, (in Chinese, with English abstract).

    Google Scholar 

  • Zhang, X. L. (2002). Multi-box pelagic–benthic coupling ecosystem modeling and the numerical study on some key ecological issues of Bohai Sea. Dissertation, Ocean University of Qingdao (in Chinese, with English abstract).

  • Zhang, Y. M., & Sun, Y. L. (2000). Application of the numerical model of estuary, shelf and sea to Jiaozhou Bay. Marine Environmental Science, 19, 13–17, (in Chinese, with English abstract).

    CAS  Google Scholar 

  • Zhang, J. (2007). Watersheds nutrient loss and eutrophication of the marine recipients: A case study of the Jiaozhou Bay, China (in this volume).

  • Zhao, L., Wei, H., & Feng, S. Z. (2002). Annual cycle and budgets of nutrients in the Bohai Sea. Environ-mental Science, 23, 78–81, (in Chinese, with English abstract).

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 4003610 and 40406017), China Postdoctoral Science Foundation (No. 2005037495), and Chinese Ministry of Science and Technology (2006CB400601). The authors would like to thank the two anonymous reviewers, for their suggestions and comments. The discussion with Prof. G.Q.LIU of Ocean University of China is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Liu.

Appendix

Appendix

The phytoplankton (Dia, i.e., diatom), nutrients [i.e., dissolved inorganic nitrogen (DIN), phosphate (DIP), and silicate (SIL)], zooplankton (Zoo), and detritus (Det) are included in the biological model (Fig. 2). The state variables obey the following equations in xyσ coordinate:

$$ \frac{{d{\left( {{\text{Dia}} \cdot D} \right)}}} {{{\text{d}}t}} = {\text{dif}}{\left( {{\text{Dia}}} \right)} + D \cdot {\left( {{\text{PR}}_{{{\text{Dia}}}} - {\text{RS}}_{{{\text{Dia}}}} - {\text{GR}}_{{{\text{Dia}}}} - {\text{MO}}_{{{\text{Dia}}}} } \right)} $$
(A-1)
$$ \frac{{{\text{d}}{\left( {{\text{Zoo}} \cdot D} \right)}}} {{{\text{d}}t}} = {\text{dif}}{\left( {{\text{Det}}} \right)} + D \cdot {\left( {{\text{PR}}_{{{\text{Zoo}}}} - {\text{RS}}_{{{\text{Zoo}}}} - {\text{MO}}_{{{\text{Zoo}}}} } \right)} $$
(A-2)
$$ \frac{{{\text{d}}{\left( {{\text{Det}} \cdot D} \right)}}} {{{\text{d}}t}} = {\text{dif}}{\left( {{\text{Det}}} \right)} + D \cdot {\left( {{\text{EX}}_{{{\text{Det}}}} - {\text{MI}}_{{{\text{Det}}}} } \right)} $$
(A-3)
$$ \frac{{{\text{d}}{\left( {{\text{DIN}} \cdot D} \right)}}} {{{\text{d}}t}} = {\text{dif}}{\left( {{\text{DIN}}} \right)} + D \cdot {\left( {{\text{RE}}_{{{\text{DIN}}}} + {\text{RM}}_{{{\text{DIN}}}} - {\text{UT}}_{{{\text{DIN}}}} } \right)} $$
(A-4)
$$ \frac{{{\text{d}}{\left( {{\text{DIP}} \cdot D} \right)}}} {{{\text{d}}t}} = {\text{dif}}{\left( {{\text{DIP}}} \right)} + D \cdot {\left( {{\text{RE}}_{{{\text{DIP}}}} + {\text{RM}}_{{{\text{DIP}}}} - {\text{UT}}_{{{\text{DIP}}}} } \right)} $$
(A-5)
$$ \frac{{{\text{d}}{\left( {{\text{SIL}} \cdot D} \right)}}} {{{\text{d}}t}} = {\text{dif}}{\left( {{\text{SIL}}} \right)} + D \cdot {\left( {{\text{RE}}_{{{\text{SIL}}}} + {\text{RM}}_{{{\text{SIL}}}} - {\text{UT}}_{{{\text{SIL}}}} } \right)}, $$
(A-6)

where, D is water depth and arithmetic operator dif is the diffusion term.

The governing equations of biological processes are as follows. The photosynthesis PRDia is expressed by

$$ {\text{PR}}_{{{\text{Dia}}}} = r^{{{\text{Dia}}}}_{{\text{P}}} \cdot e^{{r^{{{\text{Dia}}}}_{{{\text{TP}}}} {\left( {T - T_{0} } \right)}}} \cdot r^{{{\text{Dia}}}}_{{\lim it}} \cdot \frac{I} {{I^{{{\text{Dia}}}}_{0} }}e^{{1 - \frac{I} {{I^{{{\text{Dia}}}}_{0} }}}} \cdot {\text{Dia,}} $$
(A-7)

where, \( r^{{{\text{Dia}}}}_{{\text{P}}} \) denotes the maximum growth rate, \( r^{{{\text{Dia}}}}_{{{\text{TP}}}} \) the temperature-dependent coefficient; I and \( I^{{{\text{Dia}}}}_{0} \) the available and optimum light intensity for Dia growth, respectively. The available light intensity at the depth of z is assumed to be of negative exponential decrease, with depth deepening: \( I{\left( z \right)} = I_{{\text{s}}} \exp ^{{ - k_{i} z}} \), where I s is the surface light intensity. According to Weng et al. (1992), the coefficient k i should be smaller in the shallow region. Therefore, k i  = 0.7–0.04D, if D ≤ 15 m; otherwise k i  = 0.1. The nutrients limitation follows the Michaelis–Menten kinetics: \( r^{{{\text{Dia}}}}_{{\lim \;it}} = \min {\left( {\frac{{{\text{SIL}}}} {{{\text{SIL}} + K^{{{\text{Dia}}}}_{{{\text{SIL}}}} }},\frac{{{\text{DIN}}}} {{{\text{DIN}} + K^{{{\text{Dia}}}}_{{{\text{DIN}}}} }},{\text{ }}\frac{{{\text{DIP}}}} {{{\text{DIP}} + K^{{{\text{Dia}}}}_{{{\text{DIP}}}} }}} \right)} \), where \( K^{{{\text{Dia}}}}_{{{\text{DIN}}}} ,K^{{{\text{Dia}}}}_{{{\text{DIP}}}} \), and \( K^{{{\text{Dia}}}}_{{{\text{SIL}}}} \) are, the half saturation constant for DIN, DIP, and SIL, respectively. The respiration RSDia is expressed as:

$$ {\text{RS}}_{{{\text{Dia}}}} = r^{{{\text{Dia}}}}_{R} e^{{r^{{{\text{Dia}}}}_{{{\text{TR}}}} {\left( {T - T_{0} } \right)}}} \cdot {\text{Dia}} $$
(A-8)

where, \( r^{{Dia}}_{R} \) and \( r^{{Dia}}_{{TR}} \) are maximum respiration and temperature-dependent coefficient. Dia is grazed by ZOO through Ivlev function:

$$ {\text{GR}}_{{{\text{Dia}}}} = r^{{{\text{Dia}}}}_{g} Q^{{{{\left( {t - 10} \right)}} \mathord{\left/ {\vphantom {{{\left( {t - 10} \right)}} {10}}} \right. \kern-\nulldelimiterspace} {10}}}_{{10}} {\left( {1 - e^{{ - \lambda {\text{Dia}}}} } \right)} \cdot Zoo, $$
(A-9)

where, \( r^{{Dia}}_{g} \) is the grazing rate of ZOO at 10°C, and temperature-dependent coefficient, λ is Ivelev constant. The Dia mortality is described as a simple linear function:

$$ {\text{MO}}_{{{\text{Dia}}}} = r^{{{\text{Dia}}}}_{M} \cdot {\text{Dia,}} $$
(A-10)

where, \( r^{{{\text{Dia}}}}_{M} \) is mortality rate.

The Zoo assimilated and unassimilated parts, PRZoo and RSZoo, are set to be proportional to GRDia:

$$ {\text{PR}}_{{{\text{Zoo}}}} = \alpha \cdot {\text{GR}}_{{{\text{Dia}}}} $$
(A-11a)
$$ {\text{RS}}_{{{\text{Zoo}}}} = {\left( {1 - \alpha } \right)} \cdot {\text{GR}}_{{{\text{Dia}}}} , $$
(A-11b)

where α is the assimilation percentage of Zoo grazing. The Zoo mortality is described as:

$$ {\text{MO}}_{{{\text{Zoo}}}} = r^{{{\text{Zoo}}}}_{M} \frac{{{\text{Zoo}}}} {{{\text{Zoo}} + {\text{K}}_{{{\text{Zoo}}}} }} \cdot {\text{Zoo,}} $$
(A-12)

where, \( r^{{{\text{Zoo}}}}_{M} \) is the maximum death rate, and K Zoo is the half-saturation constant for Zoo mortality.

Mineralization of detritus is proportional to its concentration:

$$ {\text{MI}}_{{{\text{Det}}}} = r^{{{\text{Nit}}}}_{{{\text{Det}}}} \cdot {\text{Det,}} $$
(A-13)

where, \( r^{{{\text{Nit}}}}_{{{\text{Det}}}} \) is mineralization rate. The dead Dia and Zoo, and the unassimilated part of Zoo grazing are considered as the influx for Det:

$$ {\text{EX}}_{{{\text{Det}}}} = {\text{MO}}_{{{\text{Dia}}}} + {\text{MO}}_{{{\text{Zoo}}}} + {\text{RS}}_{{{\text{Zoo}}}} $$
(A-14)

The mineralization from detritus to DIN, DIP, and SIL are, respectively, expressed by

$$ {\text{RM}}_{{{\text{DIN}}}} = {\text{C}}_{{{\text{NC}}}} \cdot {\text{MI}}_{{{\text{Det}}}} \cdot n^{{{\text{NC}}}} $$
(A-15a)
$$ {\text{RM}}_{{{\text{DIP}}}} = {\text{C}}_{{{\text{PC}}}} \cdot {\text{MI}}_{{{\text{Det}}}} \cdot n^{{{\text{PC}}}} $$
(A-15b)
$$ {\text{RM}}_{{{\text{SIL}}}} = {\text{C}}_{{{\text{SiC}}}} \cdot {\text{MI}}_{{{\text{Det}}}} \cdot n^{{{\text{SiC}}}} $$
(A-15c)

where, n NC, n PC, and n SiC are concentration ratios inside Dia body of N/C, P/C, and Si/C, respectively; C NC , C PC, and C SiC are atomic weight ratios of N/C, P/C, and Si/C, respectively.

The uptake of nutrients by phytoplankton is linked to photosynthesis processes:

$$ {\text{UT}}_{{{\text{DIN}}}} = {\text{C}}_{{{\text{NC}}}} \cdot {\text{PR}}_{{{\text{Dia}}}} \cdot n^{{{\text{NC}}}} $$
(A-16a)
$$ {\text{UT}}_{{{\text{DIP}}}} = {\text{C}}_{{{\text{PC}}}} \cdot {\text{PR}}_{{{\text{Dia}}}} \cdot n^{{{\text{PC}}}} $$
(A-16b)
$$ {\text{UT}}_{{{\text{SIL}}}} = {\text{C}}_{{{\text{SiC}}}} \cdot {\text{PR}}_{{{\text{Dia}}}} \cdot n^{{{\text{SiC}}}} $$
(A-16c)

The nutrient releases from plankton, REDIN, REDIP, and RESIL for DIN, DIP, and SIL are related to Dia respiration as following:

$$ {\text{RE}}_{{{\text{DIN}}}} = {\text{C}}_{{{\text{NC}}}} \cdot {\text{RS}}_{{{\text{Dia}}}} \cdot n^{{{\text{NC}}}} $$
(A-17a)
$$ {\text{RE}}_{{{\text{DIP}}}} = {\text{C}}_{{{\text{PC}}}} \cdot {\text{RS}}_{{{\text{Dia}}}} \cdot n^{{{\text{PC}}}} $$
(A-17b)
$$ {\text{RE}}_{{{\text{SIL}}}} = {\text{C}}_{{{\text{SiC}}}} \cdot {\text{RS}}_{{{\text{Dia}}}} \cdot n^{{{\text{SiC}}}} $$
(A-17c)

The surface (σ → 0) and bottom (σ → 1) boundary conditions for biological variables are:

$$ \frac{{K_{{\text{H}}} }} {D}{\left( {\frac{{\partial {\text{Dia}}}} {{\partial \sigma }},\frac{{\partial {\text{Det}}}} {{\partial \sigma }}} \right)} = 0.\,\;,\; \to {\text{ }}0 $$
(A-18a, b)
$$ \frac{{K_{{\text{H}}} }} {D}{\left( {\frac{{\partial {\text{Dia}}}} {{\partial \sigma }},\frac{{\partial {\text{Det}}}} {{\partial \sigma }}} \right)}{\text{ }} = {\text{ }}0.{\text{ }},{\text{ }}\sigma {\text{ }} \to {\text{ }} - 1 $$
(A-18c, d)
$$ \frac{{K_{{\text{H}}} }} {D}{\left( {\frac{{\partial {\text{Din}}}} {{\partial \sigma }},\frac{{\partial {\text{Dip}}}} {{\partial \sigma }},\frac{{\partial {\text{Sil}}}} {{\partial \sigma }}} \right)}{\text{ }} = {\text{ }}{\left( {{\text{sur}}{\left( {{\text{Din}}} \right)},{\text{sur}}{\left( {{\text{Dip}}} \right)},{\text{sur}}{\left( {{\text{Sil}}} \right)}} \right)}{\text{ }},{\text{ }}\sigma {\text{ }} \to {\text{ }}0 $$
(A-18e, f, g)
$$ \frac{{K_{{\text{H}}} }} {D}{\left( {\frac{{\partial {\text{Din}}}} {{\partial \sigma }},\frac{{\partial {\text{Dip}}}} {{\partial \sigma }},\frac{{\partial {\text{Sil}}}} {{\partial \sigma }}} \right)}{\text{ }} = {\text{ }}{\left( {{\text{bot}}{\left( {{\text{Din}}} \right)},{\text{bot}}{\left( {{\text{Dip}}} \right)},{\text{bot}}{\left( {{\text{Sil}}} \right)}} \right)}{\text{ }},{\text{ }}\sigma {\text{ }} \to {\text{ }} - 1, $$
(A-18h, i, j)

where, sur and bot denote atmospheric deposition and nutrients flux from water–sediment interface, respectively; K H is the vertical eddy diffusion coefficient. The values of biological parameters are shown in A-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Wei, H., Bai, J. et al. Nutrients Seasonal Variation and Budget in Jiaozhou Bay, China: A 3-Dimensional Physical–Biological Coupled Model Study. Water Air Soil Pollut: Focus 7, 607–623 (2007). https://doi.org/10.1007/s11267-007-9128-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11267-007-9128-8

Keywords

Navigation