Abu Alhaija, H., Mustikovela, S. K., Mescheder, L., Geiger, A., & Rother, C. (2018). Augmented reality meets computer vision: Efficient data generation for urban driving scenes. International Journal of Computer Vision, 126(9), 961–972. https://doi.org/10.1007/s11263-018-1070-x.
Article
Google Scholar
Antorán, J., Allingham, J., & Hernández-Lobato, J. M. (2020). Depth uncertainty in neural networks. Advances in neural information processing systems,33.
Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A deep convolutional encoder–decoder architecture for image segmentation. IEEE TPAMI, 39(12), 2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615.
Article
Google Scholar
Bergmann, P., Fauser, M., Sattlegger, D., & Steger, C. (2019). MVTec AD—A comprehensive Real-World dataset for unsupervised anomaly detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 9592–9600).
Bevandić, P., Krešo, I., Oršić, M., & Šegvić, S. (2019). Simultaneous semantic segmentation and outlier detection in presence of domain shift. In German conference on pattern recognition (pp. 33–47).
Bozhinoski, D., Di Ruscio, D., Malavolta, I., Pelliccione, P., & Crnkovic, I. (2019). Safety for mobile robotic systems: A systematic mapping study from a software engineering perspective. Journal of System Software, 151, 150–179. https://doi.org/10.1016/j.jss.2019.02.021.
Article
Google Scholar
Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., & Beijbom, O. (2020). Nuscenes: A multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11621–11631).
Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2016). DeepLab. IEEE TPAMI,. https://doi.org/10.1109/TPAMI.2017.2699184.
Article
Google Scholar
Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder–decoder with atrous separable convolution for semantic image segmentation. ECCV,. https://doi.org/10.1007/978-3-030-01234-249.
Article
Google Scholar
Choi, H., Jang, E., & Alemi, A. A. (2018). WAIC, but why? Generative ensembles for robust anomaly detection (Preprint). https://arxiv.org/abs/1810.01392.
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., et al. (2016). The cityscapes dataset for semantic urban scene understanding. CVPR,. https://doi.org/10.1109/CVPR.2016.350.
Article
Google Scholar
Dai, D., Sakaridis, C., Hecker, S., & Van Gool, L. (2020). Curriculum model adaptation with synthetic and real data for semantic foggy scene understanding. International Journal of Computer Vision, 128(5), 1182–1204.
Article
Google Scholar
DeVries, T., & Taylor, G. W. (2018). Learning confidence for out-of-distribution detection in neural networks.
Di Biase, G., Blum, H., Siegwart, R., & Cadena, C. (2021). Pixel-wise anomaly detection in complex driving scenes. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 16918–16927).
Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., Patton, B., Alemi, A., Hoffman, M., & Saurous, R. A. (2017). Tensorflow distributions.
Dinh, L., Krueger, D., Bengio, Y. (2014). NICE: Non-linear independent components estimation (Preprint). https://arxiv.org/abs/1410.8516.
Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2017). Density estimation using real NVP. In ICLR.
Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 88(2), 303–338. https://doi.org/10.1007/s11263-009-0275-4.
Article
Google Scholar
Florence, P. R., Manuelli, L., & Tedrake, R. (2018). Dense object nets: Learning dense visual object descriptors by and for robotic manipulation. In: A. Billard, A. Dragan, J. Peters, J. Morimoto (eds.) Conference on robot learning (CoRL), proceedings of machine learning research (Vol. 87, pp. 373–385). PMLR.
Frey, B. J., & Hinton, G. E. (1999). Variational learning in nonlinear gaussian belief networks. Neural Computation,. https://doi.org/10.1162/089976699300016872.
Article
Google Scholar
Fu, H., Gong, M., Wang, C., Batmanghelich, K., & Tao, D. (2018). Deep ordinal regression network for monocular depth estimation. In CVPR (pp. 2002–2011). IEEE. 10.1109/CVPR.2018.00214.
Gal, Y. (2016). Uncertainty in deep learning. Ph.D. thesis, University of Cambridge.
Gal, Y., Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In: M. F. Balcan, K. Q. Weinberger (Eds.), ICML, proceedings of machine learning research (Vol. 48, pp. 1050–1059). New York: PMLR.
Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR (pp. 3354–3361). ieeexplore.ieee.org. 10.1109/CVPR.2012.6248074.
Geyer, J., Kassahun, Y., Mahmudi, M., Ricou, X., Durgesh, R., Chung, A. S., Hauswald, L., Pham, V. H., Mühlegg, M., Dorn, S., Fernandez, T., Jänicke, M., Mirashi, S., Savani, C., Sturm, M., Vorobiov, O., Oelker, M., Garreis, S., Schuberth, P. (2020). A2D2: Audi autonomous driving dataset (Preprint). https://arxiv.org/abs/2004.06320.
Golan, I., & El-Yaniv, R. (2018). Deep anomaly detection using geometric transformations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), NeurIPS (pp. 9758–9769). Curran Associates Inc.
Gong, D., Liu, L., Le, V., Saha, B., Mansour, M. R., Venkatesh, S., & van den Hengel, A. (2019). Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 9592–9600).
Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. In ICLR.
Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On calibration of modern neural networks. In: D. Precup, Y. W. Teh (Eds.), ICML, proceedings of machine learning research (Vol. 70, pp. 1321–1330). PMLR, International Convention Centre.
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961–2969).
Hendrycks, D., Basart, S., Mazeika, M., Mostajabi, M., Steinhardt, J., & Song, D. (2019). A benchmark for anomaly segmentation (Preprint). https://arxiv.org/abs/1911.11132.
Hendrycks, D., & Gimpel, K. (2017). A baseline for detecting misclassified and out-of-distribution examples in neural networks. In ICLR.
Isola, P., Zhu, J. Y., Zhou, T., Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. In 2017 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1125–1134). IEEE. 10.1109/cvpr.2017.632.
Jiang, H., Kim, B., Guan, M., & Gupta, M. (2018). To trust or not to trust a classifier. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural information processing systems (Vol. 31, pp. 5545–5556). Curran Associates Inc.
Kendall, A., Gal, Y. (2017). What uncertainties do we need in bayesian deep learning for computer vision? In NIPS (pp. 5574–5584).
Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), NeurIPS (pp. 10236–10245). Curran Associates Inc.
Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive uncertainty estimation using deep ensembles. In NIPS (pp. 6402–6413).
Lee, K., Lee, H., Lee, K., & Shin, J. (2018). Training confidence-calibrated classifiers for detecting Out-of-Distribution samples. In ICLR.
Lee, K., Lee, K., Lee, H., & Shin, J. (2018). A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In NeurIPS.
Liang, M., Yang, B., Wang, S., & Urtasun, R. (2018). Deep continuous fusion for multi-sensor 3D object detection. In ECCV (pp. 663–678). Springer. 10.1007/978-3-030-01270-039.
Liang, S., Li, Y., & Srikant, R. (2018). Enhancing the reliability of out-of-distribution image detection in neural networks. In ICLR.
Lis, K., Nakka, K., Fua, P., & Salzmann, M. (2019). Detecting the unexpected via image resynthesis. In Proceedings of the IEEE international conference on computer vision (pp. 2152–2161).
Loquercio, A., Segu, M., & Scaramuzza, D. (2020). A general framework for uncertainty estimation in deep learning. IEEE Robotics and Automation Letters, 5(2), 3153–3160. https://doi.org/10.1109/LRA.2020.2974682.
Article
Google Scholar
Malinin, A., & Gales, M. (2018). Predictive uncertainty estimation via prior networks. In NeurIPS.
Malkov, Y. A., & Yashunin, D. A. (2018). Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(4), 824–836.
Article
Google Scholar
Mandelbaum, A., & Weinshall, D. (2017). Distance-based confidence score for neural network classifiers (Preprint). https://arxiv.org/abs/1709.09844.
Mccormac, J., Clark, R., Bloesch, M., Davison, A., & Leutenegger, S. (2018). Fusion++: Volumetric Object-Level SLAM. In International conference on 3D vision (3DV) (pp. 32–41). IEEE. 10.1109/3DV.2018.00015.
Mukhoti, J., & Gal, Y. (2018). Evaluating bayesian deep learning methods for semantic segmentation (Preprint). https://arxiv.org/abs/1811.12709.
Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., & Lakshminarayanan, B. (2019). Do deep generative models know what they don’t know? In ICLR.
Neuhold, G., Ollmann, T., Bulo, S. R., & Kontschieder, P. (2017). The mapillary vistas dataset for semantic understanding of street scenes. In ICCV (pp. 5000–5009). IEEE. 10.1109/ICCV.2017.534.
Papernot, N., & McDaniel, P. (2018). Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning (Preprint). https://arxiv.org/abs/1803.04765.
Pidhorskyi, S., Almohsen, R., & Doretto, G. (2018). Generative probabilistic novelty detection with adversarial autoencoders. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), NeurIPS (pp. 6822–6833).
Pinggera, P., Ramos, S., Gehrig, S., Franke, U., Rother, C., & Mester, R. (2016). Lost and found: Detecting small road hazards for self-driving vehicles. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1099–1106). IEEE. 10.1109/IROS.2016.7759186.
Postels, J., Blum, H., Cadena, C., Siegwart, R., Van Gool, L., & Tombari, F. (2020). Quantifying aleatoric and epistemic uncertainty using density estimation in latent space (Preprint). https://arxiv.org/abs/2012.03082.
Richter, C., & Roy, N. (2017). Safe visual navigation via deep learning and novelty detection. In Robotics: Science and systems (RSS). Robotics: Science and Systems Foundation. 10.15607/RSS.2017.XIII.064.
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI),. https://doi.org/10.1007/978-3-319-24574-4_28.
Article
Google Scholar
Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S. A., Binder, A., Müller, E., Kloft, M. (2018). Deep one-class classification. In J. Dy, A. Krause (Eds.), ICML, proceedings of machine learning research (Vol. 80, pp. 4393–4402). PMLR, Stockholmsmässan. http://proceedings.mlr.press/v80/ruff18a.html.
Sabokrou, M., Khalooei, M., Fathy, M., & Adeli, E. (2018). Adversarially learned one-class classifier for novelty detection. CVPR,. https://doi.org/10.1109/cvpr.2018.00356.
Article
Google Scholar
Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PloS ONE, 10(3), e0118432. https://doi.org/10.1371/journal.pone.0118432.
Article
Google Scholar
Sakaridis, C., Dai, D., Hecker, S., & Van Gool, L. (2018). Model adaptation with synthetic and real data for semantic dense foggy scene understanding. In ECCV (pp. 707–724). Springer. 10.1007/978-3-030-01261-8\_42.
Sakaridis, C., Dai, D., & Van Gool, L. (2018). Semantic foggy scene understanding with synthetic data. International Journal of Computer Vision, 126(9), 973–992. https://doi.org/10.1007/s11263-018-1072-8.
Article
Google Scholar
Sakaridis, C., Dai, D., & Van Gool, L. (2020). Map-guided curriculum domain adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,. https://doi.org/10.1109/TPAMI.2020.3045882.
Article
Google Scholar
Sun, D., Yang, X., Liu, M., & Kautz, J. (2018). PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR,. https://doi.org/10.1109/CVPR.2018.00931.
Article
Google Scholar
Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y., Chai, Y., Caine, B., et al. (2020). Scalability in perception for autonomous driving: Waymo open dataset. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 2446–2454).
Van Amersfoort, J., Smith, L., Teh, Y. W., & Gal, Y. (2020). Uncertainty estimation using a single deep deterministic neural network. In International conference on machine learning (pp. 9690–9700).
Wang, T. C., Liu, M. Y., Zhu, J. Y., Tao, A., Kautz, J., & Catanzaro, B. (2018). High-resolution image synthesis and semantic manipulation with conditional gans. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8798–8807).
Wilson, A. G., & Izmailov, P. (2020). Bayesian deep learning and a probabilistic perspective of generalization (Preprint). https://arxiv.org/abs/2002.08791.
Yehezkel Rohekar, R., Gurwicz, Y., Nisimov, S., & Novik, G. (2019). Modeling uncertainty by learning a hierarchy of deep neural connections. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, R. Garnett (Eds.), Advances in neural information processing systems (Vol. 32, pp. 4244–4254). Curran Associates, Inc.
Zendel, O., Honauer, K., Murschitz, M., Steininger, D., & Fernandez Dominguez, G. (2018). Wilddash-creating hazard-aware benchmarks. In ECCV (pp. 402–416). openaccess.thecvf.com. 10.1007/978-3-030-01231-125.